Non-local Correlation Effects in Fermionic Many-Body Systems: Overcoming the Non-causality Problem


Abstract in English

Motivated by the intriguing physics of quasi-2d fermionic systems, such as high-temperature superconducting oxides, layered transition metal chalcogenides or surface or interface systems, the development of many-body computational methods geared at including both local and non-local electronic correlations has become a rapidly evolving field. It has been realized, however, that the success of such methods can be hampered by the emergence of noncausal features in the effective or observable quantities involved. Here, we present a new approach of extending local many-body techniques such as dynamical mean field theory (DMFT) to nonlocal correlations, which preserves causality and has a physically intuitive interpretation. Our strategy has implications for the general class of DMFT-inspired many-body methods, and can be adapted to cluster, dual boson or dual fermion techniques with minimal effort.

Download