We apply the dressing method on the Non Linear Sigma Model (NLSM), which describes the propagation of strings on $mathbb{R}times mathrm{S}^2$, for an arbitrary seed. We obtain a formal solution of the corresponding auxiliary system, which is expressed in terms of the solutions of the NLSM that have the same Pohlmeyer counterpart as the seed. Accordingly, we show that the dressing method can be applied without solving any differential equations. In this context a superposition principle emerges: The dressed solution is expressed as a non-linear superposition of the seed with solutions of the NLSM with the same Pohlmeyer counterpart as the seed.