Do you want to publish a course? Click here

Void Probability Function of Simulated Surveys of high-redshift Lyman-Alpha Emitters

92   0   0.0 ( 0 )
 Added by Lucia Perez
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We calculate the void probability function (VPF) in simulations of Lyman-$alpha$ emitters (LAEs) across a wide redshift range ($z=3.1, 4.5, 5.7, 6.6$). The VPF measures the zero-point correlation function (i.e. places devoid of galaxies) and naturally connects to higher order correlation functions while being computationally simple to calculate. We explore the Poissonian and systematic errors on the VPF, specify its accuracy as a function of average source density and the volume probed, and provide the appropriate size scales to measure the VPF. At small radii the accuracy of the VPF is limited by galaxy density, while at large radii the VPF is limited by the number of independent volumes probed. We also offer guidelines for understanding and quantifying the error in the VPF. We approximate the error in the VPF by using independent sub-volumes of the catalogs, after finding that jackknife statistics underestimate the uncertainty. We use the VPF to probe the strength of higher order correlation functions by measuring and examining the hierarchical scaling between the correlation functions using count-in-cells. The negative binomial model (NBM) has been shown to best describe the scaling between the two point correlation function and VPF for low-redshift galaxy observations. We further test the fit of the NBM by directly deriving the volume averaged two-point correlation function from the VPF and vice versa. We find the NBM best describes the $z=3.1, 4.5, 5.7$ simulated LAEs, with a 1$sigma$ deviation from the model in the $z=6.6$ catalog. This suggests that LAEs show higher order clustering terms similar to those of normal low redshift galaxies.



rate research

Read More

125 - Kim K. Nilsson 2007
Context: Many current and future surveys aim to detect the highest redshift (z >~ 7) sources through their Lyman-alpha (Ly-alpha) emission, using the narrow-band imaging method. However, to date the surveys have only yielded non-detections and upper limits as no survey has reached the necessary combination of depth and area to detect these very young star forming galaxies. Aims: We aim to calculate model luminosity functions and mock surveys of Ly-alpha emitters at z >~ 7 based on a variety of approaches. Methods: We calculate model luminosity functions at different redshifts based on three different approaches: a semi-analytical model based on CDM, a simple phenomenological model, and an extrapolation of observed Schechter functions at lower redshifts. The results of the first two models are compared with observations made at redshifts z ~ 5.7 and z ~ 6.5, and they are then extrapolated to higher redshift. Results: We present model luminosity functions for redshifts between z = 7 - 12.5 and give specific number predictions for future planned or possible narrow-band surveys for Ly-alpha emitters. We also investigate what constraints future observations will be able to place on the Ly-alpha luminosity function at very high redshift. Conclusion: It should be possible to observe z = 7 - 10 Ly-alpha emitters with present or near-future instruments if enough observing time is allocated. In particular, large area surveys such as ELVIS (Emission Line galaxies with VISTA Survey) will be useful in collecting a large sample. However, to get a large enough sample to constrain well the z >= 10 Ly-alpha luminosity function, instruments further in the future, such as an ELT, will be necessary.
We report on a search for ultraluminous Lyman alpha emitting galaxies (LAEs) at z=6.6 using the NB921 filter on Hyper Suprime-Cam on the Subaru telescope. We searched a 30 degree squared area around the North Ecliptic Pole, which we observed in broadband g, r, i, z, and y and narrowband NB816 and NB921, for sources with NB921 < 23.5 and z - NB921 > 1.3. This corresponds to a selection of log L(Ly-alpha) > 43.5 erg/s. We followed up seven candidate LAEs (out of thirteen) with the Keck DEIMOS spectrograph and confirmed five z=6.6 LAEs, one z=6.6 AGN with a broad Ly-alpha line and a strong red continuum, and one low-redshift ([OIII]5007) galaxy. The five ultraluminous LAEs have wider line profiles than lower luminosity LAEs, and one source, NEPLA4, has a complex line profile similar to that of COLA1. In combination with previous results, we show that the line profiles of the z=6.6 ultraluminous LAEs are systematically different than those of lower luminosity LAEs at this redshift. This result suggests that ultraluminous LAEs generate highly ionized regions of the intergalactic medium in their vicinity that allow the full Lyman alpha profile of the galaxy---including any blue wings---to be visible. If this interpretation is correct, then ultraluminous LAEs offer a unique opportunity to determine the properties of the ionized zones around them, which will help in understanding the ionization of the z ~ 7 intergalactic medium. A simple calculation gives a very rough estimate of 0.015 for the escape fraction of ionizing photons, but more sophisticated calculations are needed to fully characterize the uncertainties.
140 - Vithal Tilvi 2010
Lyman alpha (Lya) emission lines should be attenuated in a neutral intergalactic medium (IGM). Therefore the visibility of Lya emitters at high redshifts can serve as a valuable probe of reionization at about the 50% level. We present an imaging search for z=7.7 Lya emitting galaxies using an ultra-narrowband filter (filter width= 9A) on the NEWFIRM imager at the Kitt Peak National Observatory. We found four candidate Lya emitters in a survey volume of 1.4 x 10^4 Mpc^3, with a line flux brighter than 6x10^-18 erg/cm^2/s (5 sigma in 2 aperture). We also performed a detailed Monte-Carlo simulation incorporating the instrumental effects to estimate the expected number of Lya emitters in our survey, and found that we should expect to detect one Lya emitter, assuming a non-evolving Lya luminosity function (LF) between z=6.5 and z=7.7. Even if one of the present candidates is spectroscopically confirmed as a z~8 Lya emitter, it would indicate that there is no significant evolution of the Lya LF from z=3.1 to z~8. While firm conclusions would need both spectroscopic confirmations and larger surveys to boost the number counts of galaxies, we successfully demonstrate the feasibility of sensitive near-infrared (1.06 um) narrow-band searches using custom filters designed to avoid the OH emission lines that make up most of the sky background.
We present semi-analytical models of high redshift Lyman-{alpha} emitters (LAEs) in order to constrain the star formation efficiency in those galaxies. Our supernova feedback induced star formation model along with Sheth-Tormman halo mass function correctly reproduces the shape, amplitude and the redshift evolution of UV and Lyman-{alpha} luminosity functions of LAEs in the redshift range z = 2 to 7.3. We show that the fraction of Lyman-{alpha} emitting galaxies increases with increasing redshifts reaching to unity just after the reionisation. However, we show that star formation efficiency in those LAEs does not show any redshift evolution within the uncertainty in available observations. This would have significant repercussion on the reionisation of the intergalactic medium.
With the Multi Unit Spectroscopic Explorer (MUSE), it is now possible to detect spatially extended Lyman alpha emission from individual faint (M_UV ~ -18) galaxies at redshifts, 3 < z < 6, tracing gas out to circum-galactic scales comparable to the dark matter halo virial radius. To explore the implications of such observations, we present a cosmological radiation hydrodynamics simulation of a single galaxy, chosen to be typical of the Lyman alpha-emitting galaxies detected by MUSE in deep fields. We use this simulation to study the origin and dynamics of the high-redshift circum-galactic medium (CGM). We find that the majority of the mass in the diffuse CGM is comprised of material infalling for the first time towards the halo center, but with the inner CGM also containing a comparable amount of mass that has moved past first-pericentric passage, and is in the process of settling into a rotationally supported configuration. Making the connection to Lyman alpha emission, we find that the observed extended surface brightness profile is due to a combination of three components: scattering of galactic Lyman alpha emission in the CGM, in-situ emission of CGM gas (mostly infalling), and Lyman alpha emission from small satellite galaxies. The weight of these contributions vary with distance from the galaxy such that (1) scattering dominates the inner regions (r < 7 kpc), at surface brightness larger than a few 10^-19 cgs, (2) all components contribute equally around r ~ 10 kpc (or SB ~10^-19), and (3) the contribution of small satellite galaxies takes over at large distances (or SB ~10^-20). Our simulation fails to reproduce the characteristic observed Lyman alpha spectral morphology that is red-shifted with respect to the systemic velocity, with the implication that the simulation is missing an important component of neutral outflowing gas.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا