No Arabic abstract
Classical learning theory suggests that the optimal generalization performance of a machine learning model should occur at an intermediate model complexity, with simpler models exhibiting high bias and more complex models exhibiting high variance of the predictive function. However, such a simple trade-off does not adequately describe deep learning models that simultaneously attain low bias and variance in the heavily overparameterized regime. A primary obstacle in explaining this behavior is that deep learning algorithms typically involve multiple sources of randomness whose individual contributions are not visible in the total variance. To enable fine-grained analysis, we describe an interpretable, symmetric decomposition of the variance into terms associated with the randomness from sampling, initialization, and the labels. Moreover, we compute the high-dimensional asymptotic behavior of this decomposition for random feature kernel regression, and analyze the strikingly rich phenomenology that arises. We find that the bias decreases monotonically with the network width, but the variance terms exhibit non-monotonic behavior and can diverge at the interpolation boundary, even in the absence of label noise. The divergence is caused by the emph{interaction} between sampling and initialization and can therefore be eliminated by marginalizing over samples (i.e. bagging) emph{or} over the initial parameters (i.e. ensemble learning).
Adversarially trained models exhibit a large generalization gap: they can interpolate the training set even for large perturbation radii, but at the cost of large test error on clean samples. To investigate this gap, we decompose the test risk into its bias and variance components and study their behavior as a function of adversarial training perturbation radii ($varepsilon$). We find that the bias increases monotonically with $varepsilon$ and is the dominant term in the risk. Meanwhile, the variance is unimodal as a function of $varepsilon$, peaking near the interpolation threshold for the training set. This characteristic behavior occurs robustly across different datasets and also for other robust training procedures such as randomized smoothing. It thus provides a test for proposed explanations of the generalization gap. We find that some existing explanations fail this test--for instance, by predicting a monotonically increasing variance curve. This underscores the power of bias-variance decompositions in modern settings-by providing two measurements instead of one, they can rule out more explanations than test accuracy alone. We also show that bias and variance can provide useful guidance for scalably reducing the generalization gap, highlighting pre-training and unlabeled data as promising routes.
Sampling from a log-concave distribution function is one core problem that has wide applications in Bayesian statistics and machine learning. While most gradient free methods have slow convergence rate, the Langevin Monte Carlo (LMC) that provides fast convergence requires the computation of gradients. In practice one uses finite-differencing approximations as surrogates, and the method is expensive in high-dimensions. A natural strategy to reduce computational cost in each iteration is to utilize random gradient approximations, such as random coordinate descent (RCD) or simultaneous perturbation stochastic approximation (SPSA). We show by a counter-example that blindly applying RCD does not achieve the goal in the most general setting. The high variance induced by the randomness means a larger number of iterations are needed, and this balances out the saving in each iteration. We then introduce a new variance reduction approach, termed Randomized Coordinates Averaging Descent (RCAD), and incorporate it with both overdamped and underdamped LMC. The methods are termed RCAD-O-LMC and RCAD-U-LMC respectively. The methods still sit in the random gradient approximation framework, and thus the computational cost in each iteration is low. However, by employing RCAD, the variance is reduced, so the methods converge within the same number of iterations as the classical overdamped and underdamped LMC. This leads to a computational saving overall.
Langevin Monte Carlo (LMC) is a popular Bayesian sampling method. For the log-concave distribution function, the method converges exponentially fast, up to a controllable discretization error. However, the method requires the evaluation of a full gradient in each iteration, and for a problem on $mathbb{R}^d$, this amounts to $d$ times partial derivative evaluations per iteration. The cost is high when $dgg1$. In this paper, we investigate how to enhance computational efficiency through the application of RCD (random coordinate descent) on LMC. There are two sides of the theory: 1 By blindly applying RCD to LMC, one surrogates the full gradient by a randomly selected directional derivative per iteration. Although the cost is reduced per iteration, the total number of iteration is increased to achieve a preset error tolerance. Ultimately there is no computational gain; 2 We then incorporate variance reduction techniques, such as SAGA (stochastic average gradient) and SVRG (stochastic variance reduced gradient), into RCD-LMC. It will be proved that the cost is reduced compared with the classical LMC, and in the underdamped case, convergence is achieved with the same number of iterations, while each iteration requires merely one-directional derivative. This means we obtain the best possible computational cost in the underdamped-LMC framework.
We examine gradient descent on unregularized logistic regression problems, with homogeneous linear predictors on linearly separable datasets. We show the predictor converges to the direction of the max-margin (hard margin SVM) solution. The result also generalizes to other monotone decreasing loss functions with an infimum at infinity, to multi-class problems, and to training a weight layer in a deep network in a certain restricted setting. Furthermore, we show this convergence is very slow, and only logarithmic in the convergence of the loss itself. This can help explain the benefit of continuing to optimize the logistic or cross-entropy loss even after the training error is zero and the training loss is extremely small, and, as we show, even if the validation loss increases. Our methodology can also aid in understanding implicit regularization n more complex models and with other optimization methods.
Nonnegative CANDECOMP/PARAFAC (NCP) decomposition is an important tool to process nonnegative tensor. Sometimes, additional sparse regularization is needed to extract meaningful nonnegative and sparse components. Thus, an optimization method for NCP that can impose sparsity efficiently is required. In this paper, we construct NCP with sparse regularization (sparse NCP) by l1-norm. Several popular optimization methods in block coordinate descent framework are employed to solve the sparse NCP, all of which are deeply analyzed with mathematical solutions. We compare these methods by experiments on synthetic and real tensor data, both of which contain third-order and fourth-order cases. After comparison, the methods that have fast computation and high effectiveness to impose sparsity will be concluded. In addition, we proposed an accelerated method to compute the objective function and relative error of sparse NCP, which has significantly improved the computation of tensor decomposition especially for higher-order tensor.