We establish an algebraic approach to prove the properness of moduli spaces of K-polystable Fano varieties and reduce the problem to a conjecture on destabilizations of K-unstable Fano varieties. Specifically, we prove that if the stability threshold of every K-unstable Fano variety is computed by a divisorial valuation, then such K-moduli spaces are proper. The argument relies on studying certain optimal destabilizing test configurations and constructing a Theta-stratification on the moduli stack of Fano varieties.
We show that for a K-unstable Fano variety, any divisorial valuation computing its stability threshold induces a non-trivial special test configuration preserving the stability threshold. When such a divisorial valuation exists, we show that the Fano variety degenerates to a uniquely determined twisted K-polystable Fano variety. We also show that the stability threshold can be approximated by divisorial valuations induced by special test configurations. As an application of the above results and the analytic work of Datar, Szekelyhidi, and Ross, we deduce that greatest Ricci lower bounds of Fano manifolds of fixed dimension form a finite set of rational numbers. As a key step in the proofs, we adapt the process of Li and Xu producing special test configurations to twisted K-stability in the sense of Dervan.
We develop a general approach to prove K-stability of Fano varieties. The new theory is used to (a) prove the existence of Kahler-Einstein metrics on all smooth Fano hypersurfaces of Fano index two, (b) to compute the stability thresholds for hypersurfaces at generalized Eckardt points and for cubic surfaces at all points, and (c) to provide a new algebraic proof of Tians criterion for K-stability, amongst other applications.
We prove that K-polystable log Fano pairs have reductive automorphism groups. In fact, we deduce this statement by establishing more general results concerning the S-completeness and $Theta$-reductivity of the moduli of K-semistable log Fano pairs. Assuming the conjecture that K-semistability is an open condition, we prove that the Artin stack parametrizing K-semistable Fano varieties admits a separated good moduli space.
In this paper, we consider the CM line bundle on the K-moduli space, i.e., the moduli space parametrizing K-polystable Fano varieties. We prove it is ample on any proper subspace parametrizing reduced uniformly K-stable Fano varieties which conjecturally should be the entire moduli space. As a corollary, we prove that the moduli space parametrizing smoothable K-polystable Fano varieties is projective. During the course of proof, we develop a new invariant for filtrations which can be used to test various K-stability notions of Fano varieties.
We construct proper good moduli spaces parametrizing K-polystable $mathbb{Q}$-Gorenstein smoothable log Fano pairs $(X, cD)$, where $X$ is a Fano variety and $D$ is a rational multiple of the anti-canonical divisor. We then establish a wall-crossing framework of these K-moduli spaces as $c$ varies. The main application in this paper is the case of plane curves of degree $d geq 4$ as boundary divisors of $mathbb{P}^2$. In this case, we show that when the coefficient $c$ is small, the K-moduli space of these pairs is isomorphic to the GIT moduli space. We then show that the first wall crossing of these K-moduli spaces are weighted blow-ups of Kirwan type. We also describe all wall crossings for degree 4,5,6, and relate the final K-moduli spaces to Hackings compactification and the moduli of K3 surfaces.
Harold Blum
,Daniel Halpern-Leistner
,Yuchen Liu
.
(2020)
.
"On properness of K-moduli spaces and optimal degenerations of Fano varieties"
.
Harold Blum
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا