Self-Organized Networks: Darwinian Evolution of Myosin-1


Abstract in English

Cytoskeletons are self-organized networks based on polymerized proteins: actin, tubulin, and driven by motor proteins, such as myosin, kinesin and dynein. Their positive Darwinian evolution enables them to approach optimized functionality (self-organized criticality). The principal features of the eukaryotic evolution of the cytoskeleton motor protein myosin-1 parallel those of actin and tubulin, but also show striking differences connected to its dynamical function. Optimized (long) hydropathic waves characterize the molecular level Darwinian evolution towards optimized functionality (self-organized criticality). The N-terminal and central domains of myosin-1 have evolved in eukaryotes at different rates, with the central domain hydropathic extrema being optimally active in humans. A test shows that hydropathic scaling can yield accuracies of better than 1% near optimized functionality. Evolution towards synchronized level extrema is connected to a special function of Mys-1 in humans involving Golgi complexes.

Download