Do you want to publish a course? Click here

Probing the pathway of an ultrafast structural phase transition to illuminate the transition mechanism in Cu2S

365   0   0.0 ( 0 )
 Added by Junjie Li
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Disentangling the primary order parameter from secondary order parameters in phase transitions is critical to the interpretation of the transition mechanisms in strongly correlated systems and quantum materials. Here we present a study of structural phase transition pathways in superionic Cu2S nanocrystals that exhibit intriguing properties. Utilizing ultrafast electron diffraction techniques sensitive in both momentum-space and the time-domain, we distinguish the dynamics of crystal symmetry breaking and lattice expansion in this system. We are able to follow the transient states along the transition pathway and so observe the dynamics of both the primary and secondary order parameters. Based on these observations we argue that the mechanism of the structural phase transition in Cu2S is dominated by the electron-phonon coupling. This mechanism advances the understanding from previous results where the focus was solely on dynamic observations of the lattice expansion.



rate research

Read More

We explore the coexistence region in the vicinity of the Mott critical end point employing a compressible cell spin-$1/2$ Ising-like model. We analyze the case for the spin-liquid candidate $kappa$-(BEDT-TTF)$_2$Cu$_2$(CN)$_3$, where close to the Mott critical end point metallic puddles coexist with an insulating ferroelectric phase. Our results are fourfold: $i$) a universal divergent-like behavior of the Gruneisen parameter upon crossing the first-order transition line; $ii$) based on scaling arguments, we show that within the coexistence region, for $any$ system close to the critical point, the relaxation time is entropy-dependent; $iii$) we propose the electric Gruneisen parameter $Gamma_E$, which quantifies the electrocaloric effect; $iv$) we identify the metallic/insulating coexistence region as an electronic Griffiths-like phase. Our findings suggest that $Gamma_E$ governs the dielectric response close to the critical point and that an electronic Griffiths-like phase emerges in the coexistence region.
Complex systems, which consist of a large number of interacting constituents, often exhibit universal behavior near a phase transition. A slowdown of certain dynamical observables is one such recurring feature found in a vast array of contexts. This phenomenon, known as critical slowing down, is well studied mostly in thermodynamic phase transitions. However, it is less understood in highly nonequilibrium settings, where the time it takes to traverse the phase boundary becomes comparable to the timescale of dynamical fluctuations. Using transient optical spectroscopy and femtosecond electron diffraction, we studied a photo-induced transition of a model charge-density-wave (CDW) compound, LaTe$_3$. We observed that it takes the longest time to suppress the order parameter at the threshold photoexcitation density, where the CDW transiently vanishes. This finding can be quantitatively captured by generalizing the time-dependent Landau theory to a system far from equilibrium. The experimental observation and theoretical understanding of dynamical slowing down may offer insight into other general principles behind nonequilibrium phase transitions in many-body systems.
Rare-earth nickelates exhibit a remarkable metal-insulator transition accompanied by a structural transition associated with a lattice `breathing mode. Using model considerations and first-principles calculations, we present a theory of this phase transition, which reveals the key role of the coupling between the electronic and lattice instabilities. We show that the transition is driven by the proximity to an electronic disproportionation instability which couples to the breathing mode, thus cooperatively driving the system into the insulating state. This allows us to identify two key control parameters of the transition: the susceptibility to electronic disproportionation and the stiffness of the lattice mode. We show that our findings can be rationalized in terms of a Landau theory involving two coupled order parameters, with general implications for transition-metal oxides.
In the vicinity of a quantum critical point, quenched disorder can lead to a quantum Griffiths phase, accompanied by an exotic power-law scaling with a continuously varying dynamical exponent that diverges in the zero-temperature limit. Here, we investigate a nematic quantum critical point in the iron-based superconductor FeSe$_{0.89}$S$_{0.11}$ using applied hydrostatic pressure. We report an unusual crossing of the magnetoresistivity isotherms in the non-superconducting normal state which features a continuously varying dynamical exponent over a large temperature range. We interpret our results in terms of a quantum Griffiths phase caused by nematic islands that result from the local distribution of Se and S atoms. At low temperatures, the Griffiths phase is masked by the emergence of a Fermi liquid phase due to a strong nematoelastic coupling and a Lifshitz transition that changes the topology of the Fermi surface.
Fermi surface is at the heart of our understanding of metals and strongly correlated many-body systems. An abrupt change in the Fermi surface topology, also called Lifshitz transition, can lead to the emergence of fascinating phenomena like colossal magnetoresistance and superconductivity. While Lifshitz transitions have been demonstrated for a broad range of materials by equilibrium tuning of macroscopic parameters such as strain, doping, pressure and temperature, a non-equilibrium dynamical route toward ultrafast modification of the Fermi surface topology has not been experimentally demonstrated. Combining time-resolved multidimensional photoemission spectroscopy with state-of-the-art TDDFT+$U$ simulations, we introduce a novel scheme for driving an ultrafast Lifshitz transition in the correlated type-II Weyl semimetal T$mathrm{_{d}}$-MoTe$_{2}$. We demonstrate that this non-equilibrium topological electronic transition finds its microscopic origin in the dynamical modification of the effective electronic correlations. These results shed light on a novel ultrafast scheme for controlling the Fermi surface topology in correlated quantum materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا