Do you want to publish a course? Click here

Spin precession as a new window into disformal scalar fields

88   0   0.0 ( 0 )
 Added by Leong Khim Wong
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We launch a first investigation into how a light scalar field coupled both conformally and disformally to matter influences the evolution of spinning point-like bodies. Working directly at the level of the equations of motion, we derive novel spin-orbit and spin-spin effects accurate to leading order in a nonrelativistic and weak-field expansion. Crucially, unlike the spin-independent effects induced by the disformal coupling, which have been shown to vanish in circular binaries due to rotational symmetry, the spin-dependent effects we study here persist even in the limit of zero eccentricity, and so provide a new and qualitatively distinct way of probing these kinds of interactions. To illustrate their potential, we confront our predictions with spin-precession measurements from the Gravity Probe B experiment and find that the resulting constraint improves upon existing bounds from perihelion precession by over 5 orders of magnitude. Our results therefore establish spin effects as a promising window into the disformally coupled dark sector.



rate research

Read More

We study the frame dependence/independence of cosmological observables under disformal transformations, extending the previous results regarding conformal transformations, and provide the correspondence between Jordan-frame and Einstein-frame variables. We consider quantities such as the gravitational constant in the Newtonian limit, redshift, luminosity and angular diameter distances, as well as the distance-duality relation. Also, the Boltzmann equation, the observed specific intensity, and the adiabaticity condition are discussed. Since the electromagnetic action changes under disformal transformations, photons in the Einstein frame no longer propagate along null geodesics. As a result, several quantities of cosmological interest are modified. Nevertheless, we show that the redshift is invariant and the distance-duality relation (the relation between the luminosity distance and the angular diameter distance) still holds in general spacetimes even though the reciprocity relation (the relation between two geometrical distances) is modified.
Low-energy effective field theories containing a light scalar field are used extensively in cosmology, but often there is a tension between embedding such theories in a healthy UV completion and achieving a phenomenologically viable screening mechanism in the IR. Here, we identify the range of interaction couplings which allow for a smooth resummation of classical non-linearities (necessary for kinetic/Vainshtein-type screening), and compare this with the range allowed by unitarity, causality and locality in the underlying UV theory. The latter region is identified using positivity bounds on the $2to2$ scattering amplitude, and in particular by considering scattering about a non-trivial background for the scalar we are able to place constraints on interactions at all orders in the field (beyond quartic order). We identify two classes of theories can both exhibit screening and satisfy existing positivity bounds, namely scalar-tensor theories of $P(X)$ or quartic Horndeski type in which the leading interaction contains an odd power of $X$. Finally, for the quartic DBI Galileon (equivalent to a disformally coupled scalar in the Einstein frame), the analogous resummation can be performed near two-body systems and imposing positivity constraints introduces a non-perturbative ambiguity in the screened scalar profile. These results will guide future searches for UV complete models which exhibit screening of fifth forces in the IR.
Why is the Universe so homogeneous and isotropic? We summarize a general study of a $gamma$-law perfect fluid alongside an inhomogeneous, massless scalar gauge field (with homogeneous gradient) in anisotropic spaces with General Relativity. The anisotropic matter sector is implemented as a $j$-form (field-strength level), where $j,in,{1,3}$, and the spaces studied are Bianchi space-times of solvable type. Walds no-hair theorem is extended to include the $j$-form case. We highlight three new self-similar space-times: the Edge, the Rope and Wonderland. The latter solution is so far found to exist in the physical state space of types I,II, IV, VI$_0$, VI$_h$, VII$_0$ and VII$_h$, and is a global attractor in I and V. The stability analysis of the other types has not yet been performed. This paper is a summary of ~[1], with some remarks towards new results which will be further laid out in upcoming work.
We consider the existence of an inflaton described by an homogeneous scalar field in the Szekeres cosmological metric. The gravitational field equations are reduced to two families of solutions which describe the homogeneous Kantowski-Sachs spacetime and an inhomogeneous FLRW(-like) spacetime with spatial curvature a constant. The main differences with the original Szekeres spacetimes containing only pressure-free matter are discussed. We investigate the stability of the two families of solution by studying the critical points of the field equations. We find that there exist stable solutions which describe accelerating spatially-flat FLRW geometries.
In the present article we study the cosmological evolution of a two-scalar field gravitational theory defined in the Jordan frame. Specifically, we assume one of the scalar fields to be minimally coupled to gravity, while the second field which is the Brans-Dicke scalar field is nonminimally coupled to gravity and also coupled to the other scalar field. In the Einstein frame this theory reduces to a two-scalar field theory where the two fields can interact only in the potential term, which means that the quintom theory is recovered. The cosmological evolution is studied by analyzing the equilibrium points of the field equations in the Jordan frame. We find that the theory can describe the cosmological evolution in large scales, while inflationary solutions are also provided.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا