No Arabic abstract
We investigate the role of linear mechanisms in the emergence of nonlinear horizontal self-propelled states of a heaving foil in a quiescent fluid. Two states are analyzed: a periodic state of unidirectional motion and a quasi-periodic state of slow back & forth motion around a mean horizontal position. The states emergence is explained through a fluid-solid Floquet stability analysis of the non-propulsive symmetric base solution. Unlike a purely-hydrodynamic analysis, our analysis accurately determine the locomotion states onset. An unstable synchronous mode is found when the unidirectional propulsive solution is observed. The obtained mode has a propulsive character, featuring a mean horizontal velocity and an asymmetric flow that generates a horizontal force accelerating the foil. An unstable asynchronous mode, also featuring flow asymmetry and a non-zero velocity, is found when the back & forth state is observed. Its associated complex multiplier introduces a slow modulation of the flapping period, agreeing with the quasi-periodic nature of the back & forth regime. The temporal evolution of this perturbation shows how the horizontal force exerted by the flow is alternatively propulsive or resistive over a slow period. For both modes, an analysis of the velocity and force perturbation time-averaged over the flapping period is used to establish physical instability criteria. The behaviour for large solid-to-fluid density ratio of the modes is thus analyzed. The asynchronous fluid-solid mode converges towards the purely-hydrodynamic one, whereas the synchronous mode becomes marginally unstable in our analysis not converging to the purely-hydrodynamic analysis where it is never destabilised.
We present theory and experiments demonstrating the existence of invariant manifolds that impede the motion of microswimmers in two-dimensional fluid flows. One-way barriers are apparent in a hyperbolic fluid flow that block the swimming of both smooth-swimming and run-and-tumble emph{Bacillus subtilis} bacteria. We identify key phase-space structures, called swimming invariant manifolds (SwIMs), that serve as separatrices between different regions of long-time swimmer behavior. When projected into $xy$-space, the edges of the SwIMs act as one-way barriers, consistent with the experiments.
We consider self-propelled droplets which are driven by internal flow. Tracer particles, which are advected by the flow, in general follow chaotic trajectories, even though the motion of the autonomous swimmer is completely regular. The flow is mixing, and for P{e}clet and Batchelor numbers, which are realized e.g. in eucaryotic cells, advective mixing can substantially accelerate and even dominate transport by diffusion.
Inviscid computational results are presented on a self-propelled virtual body combined with an airfoil undergoing pitch oscillations about its leading-edge. The scaling trends of the time-averaged thrust forces are shown to be predicted accurately by Garricks theory. However, the scaling of the time-averaged power for finite amplitude motions is shown to deviate from the theory. Novel time-averaged power scalings are presented that account for a contribution from added-mass forces, from the large-amplitude separating shear layer at the trailing-edge, and from the proximity of the trailing-edge vortex. Scaling laws for the self-propelled speed, efficiency and cost of transport ($CoT$) are subsequently derived. Using these scaling relations the self-propelled metrics can be predicted to within 5% of their full-scale values by using parameters known a priori. The relations may be used to drastically speed-up the design phase of bio-inspired propulsion systems by offering a direct link between design parameters and the expected $CoT$. The scaling relations also offer one of the first mechanistic rationales for the scaling of the energetics of self-propelled swimming. Specifically, the cost of transport is shown to scale predominately with the added mass power. This suggests that the $CoT$ of organisms or vehicles using unsteady propulsion will scale with their mass as $CoT propto m^{-1/3}$, which is indeed shown to be consistent with existing biological data.
The transport of small quantities of liquid on a solid surface is inhibited by the resistance to motion caused by the contact between the liquid and the solid. To overcome such resistance, motion can be externally driven through gradients in electric fields, but these all inconveniently involve the input of external energy. Alternatively, gradients in physical shape and wettability - the conical shape of cactus spines to create self-propelled motion. However, such self-propelled motion to date has limited success in overcoming the inherent resistance to motion of the liquid contact with the solid. Here we propose a simple solution in the form of shaped-liquid surface, where solid topographic structures at one length scale provides the base for a smaller length-scale liquid conformal layer. This dual-length scale render possible slippery surfaces with superhydrophobic properties. Combined to an heterogeneous topography, it provides a gradient in liquid-on-liquid wettability with minimal resistance to motion and long range directional self-propelled droplet transport. Moreover, the liquid-liquid contact enables impacting droplets to be captured and transported, even when the substrate is inverted. These design principles are highly beneficial for droplet transport in microfluidics, self-cleaning surfaces, fog harvesting and in heat transfer.
We report the generation of directed self-propelled motion of a droplet of aniline oil with a velocity on the order of centimeters per second on an aqueous phase. It is found that, depending on the initial conditions, the droplet shows either circular or beeline motion in a circular Petri dish. The motion of a droplet depends on volume of the droplet and concentration of solution. The velocity decreases when volume of the droplet and concentration of solution increase. Such unique motion is discussed in terms of Marangoni-driven spreading under chemical nonequilibrium. The simulation reproduces the mode of motion in a circular Petri dish.