Do you want to publish a course? Click here

Brain tumor segmentation with self-ensembled, deeply-supervised 3D U-net neural networks: a BraTS 2020 challenge solution

207   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Brain tumor segmentation is a critical task for patients disease management. In order to automate and standardize this task, we trained multiple U-net like neural networks, mainly with deep supervision and stochastic weight averaging, on the Multimodal Brain Tumor Segmentation Challenge (BraTS) 2020 training dataset. Two independent ensembles of models from two different training pipelines were trained, and each produced a brain tumor segmentation map. These two labelmaps per patient were then merged, taking into account the performance of each ensemble for specific tumor subregions. Our performance on the online validation dataset with test time augmentation were as follows: Dice of 0.81, 0.91 and 0.85; Hausdorff (95%) of 20.6, 4,3, 5.7 mm for the enhancing tumor, whole tumor and tumor core, respectively. Similarly, our solution achieved a Dice of 0.79, 0.89 and 0.84, as well as Hausdorff (95%) of 20.4, 6.7 and 19.5mm on the final test dataset, ranking us among the top ten teams. More complicated training schemes and neural network architectures were investigated without significant performance gain at the cost of greatly increased training time. Overall, our approach yielded good and balanced performance for each tumor subregion. Our solution is open sourced at https://github.com/lescientifik/open_brats2020.



rate research

Read More

In this paper, we propose a Hybrid High-resolution and Non-local Feature Network (H2NF-Net) to segment brain tumor in multimodal MR images. Our H2NF-Net uses the single and cascaded HNF-Nets to segment different brain tumor sub-regions and combines the predictions together as the final segmentation. We trained and evaluated our model on the Multimodal Brain Tumor Segmentation Challenge (BraTS) 2020 dataset. The results on the test set show that the combination of the single and cascaded models achieved average Dice scores of 0.78751, 0.91290, and 0.85461, as well as Hausdorff distances ($95%$) of 26.57525, 4.18426, and 4.97162 for the enhancing tumor, whole tumor, and tumor core, respectively. Our method won the second place in the BraTS 2020 challenge segmentation task out of nearly 80 participants.
Training a deep neural network is an optimization problem with four main ingredients: the design of the deep neural network, the per-sample loss function, the population loss function, and the optimizer. However, methods developed to compete in recent BraTS challenges tend to focus only on the design of deep neural network architectures, while paying less attention to the three other aspects. In this paper, we experimented with adopting the opposite approach. We stuck to a generic and state-of-the-art 3D U-Net architecture and experimented with a non-standard per-sample loss function, the generalized Wasserstein Dice loss, a non-standard population loss function, corresponding to distributionally robust optimization, and a non-standard optimizer, Ranger. Those variations were selected specifically for the problem of multi-class brain tumor segmentation. The generalized Wasserstein Dice loss is a per-sample loss function that allows taking advantage of the hierarchical structure of the tumor regions labeled in BraTS. Distributionally robust optimization is a generalization of empirical risk minimization that accounts for the presence of underrepresented subdomains in the training dataset. Ranger is a generalization of the widely used Adam optimizer that is more stable with small batch size and noisy labels. We found that each of those variations of the optimization of deep neural networks for brain tumor segmentation leads to improvements in terms of Dice scores and Hausdorff distances. With an ensemble of three deep neural networks trained with various optimization procedures, we achieved promising results on the validation dataset of the BraTS 2020 challenge. Our ensemble ranked fourth out of the 693 registered teams for the segmentation task of the BraTS 2020 challenge.
Accuracy segmentation of brain structures could be helpful for glioma and radiotherapy planning. However, due to the visual and anatomical differences between different modalities, the accurate segmentation of brain structures becomes challenging. To address this problem, we first construct a residual block based U-shape network with a deep encoder and shallow decoder, which can trade off the framework performance and efficiency. Then, we introduce the Tversky loss to address the issue of the class imbalance between different foreground and the background classes. Finally, a model ensemble strategy is utilized to remove outliers and further boost performance.
Segmentation of tumors in brain MRI images is a challenging task, where most recent methods demand large volumes of data with pixel-level annotations, which are generally costly to obtain. In contrast, image-level annotations, where only the presence of lesion is marked, are generally cheap, generated in far larger volumes compared to pixel-level labels, and contain less labeling noise. In the context of brain tumor segmentation, both pixel-level and image-level annotations are commonly available; thus, a natural question arises whether a segmentation procedure could take advantage of both. In the present work we: 1) propose a learning-based framework that allows simultaneous usage of both pixel- and image-level annotations in MRI images to learn a segmentation model for brain tumor; 2) study the influence of comparative amounts of pixel- and image-level annotations on the quality of brain tumor segmentation; 3) compare our approach to the traditional fully-supervised approach and show that the performance of our method in terms of segmentation quality may be competitive.
Automatic segmentation of cardiac magnetic resonance imaging (MRI) facilitates efficient and accurate volume measurement in clinical applications. However, due to anisotropic resolution and ambiguous border (e.g., right ventricular endocardium), existing methods suffer from the degradation of accuracy and robustness in 3D cardiac MRI video segmentation. In this paper, we propose a novel Deformable U-Net (DeU-Net) to fully exploit spatio-temporal information from 3D cardiac MRI video, including a Temporal Deformable Aggregation Module (TDAM) and a Deformable Global Position Attention (DGPA) network. First, the TDAM takes a cardiac MRI video clip as input with temporal information extracted by an offset prediction network. Then we fuse extracted temporal information via a temporal aggregation deformable convolution to produce fused feature maps. Furthermore, to aggregate meaningful features, we devise the DGPA network by employing deformable attention U-Net, which can encode a wider range of multi-dimensional contextual information into global and local features. Experimental results show that our DeU-Net achieves the state-of-the-art performance on commonly used evaluation metrics, especially for cardiac marginal information (ASSD and HD).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا