Do you want to publish a course? Click here

Low temperature carrier transport mechanism and photoconductivity of WSe2

61   0   0.0 ( 0 )
 Added by Akshay Kumar Dr.
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

This work reports the electrical transport and temperature-dependent photoconductivity in tungsten diselenide (WSe2) thin films. The electrical conductivity analysis shows the presence of the three regions with temperature variation. At lower temperatures (<190K), carriers become localized to small regions in the film due to the Mott hopping mechanism. The middle region (190 to 273 K) follows Seto parameters and obtained low barrier height (0.0873 eV) may be responsible for the improved carrier mobility. At higher temperature (>273K) region, thermally activated conduction is dominated with two activation energies of ~138 meV and 98 meV. The peaks obtained in photoluminescent analysis attributes to the presence of mid-bandgap states or defect states which play an important role in the photoconductivity of WSe2. The transient photoconductivity measurements show consistent temperature-dependent behaviour. The effect of light intensity and wavelength variation on the photoconductivity of WSe2 thin films is also discussed. The photocurrent is 1.19*10-5 A at 125 K while at 350 K it was observed to be 3.12*10-4 A. The light-on/off current cycles show that the current can recover to its initial state which points to the stable and outstanding reversible properties of the WSe2 thin film device to be used in photodetector applications.

rate research

Read More

155 - J. N. Heyman 2014
We investigated negative photoconductivity in graphene using ultrafast terahertz techniques. Infrared transmission was used to determine the Fermi energy, carrier density and mobility of p-type CVD graphene samples. Time-resolved terahertz photoconductivity measurements using a tunable mid-infrared pump probed these samples at photon energies between 0.35eV to 1.55eV, approximately one half to three times the Fermi energy of the samples. Although interband optical transitions in graphene are blocked for pump photon energies less than twice the Fermi energy, we observe negative photoconductivity at all pump photon energies investigated, indicating that interband excitation is not required to observe this effect. Our results are consistent with a thermalized free carrier population that cools by electron-phonon scattering, but inconsistent with models of negative photoconductivity based on population inversion.
The temperature (T) dependent x-ray diffraction (XRD) and resistivity measurements of La0.175Pr0.45Ca0.375MnO3 (LPCMO) have been performed down to 2K to understand the structural and transport properties. From room temperature down to 220K, LPCMO exists in orthorhombic phase with Pnma structure and at 220K, it transforms to charge ordered (CO) monoclinic phase with P21/m structure and remains as it is down to 2K. The CO phase is evident from the occurrence of weak but well defined superlattice peaks in the XRD pattern. This structural transformation is of first order in nature as evident from the phase coexistence across the transition region. These results thus clearly illustrate that LPCMO undergoes a first order structural phase transition from charge disordered orthorhombic phase to CO monoclinic phase at 220K, consistent with temperature dependent resistivity results. Our structural analysis of T dependent XRD data using Rietveld refinement infers that below 220K, LPCMO forms commensurate CO monoclinic P21/m structure with four times structural modulation.
We have made thermal and electrical transport measurements of uncompressed pyrolytic graphite sheet (uPGS), a mass-produced thin graphite sheet with various thicknesses between 10 and 100 {mu}m, at temperatures between 2 and 300 K. Compared to exfoliated graphite sheets like Grafoil, uPGS has much higher conductivities by an order of magnitude because of its high crystallinity confirmed by X-ray diffraction and Raman spectroscopy. This material is advantageous as a thermal link of light weight in a wide temperature range particularly above 60 K where the thermal conductivity is much higher than common thermal conductors such as copper and aluminum alloys. We also found a general relationship between thermal and electrical conductivities in graphite-based materials which have highly anisotropic conductivities. This would be useful to estimate thermal conductance of a cryogenic part made of these materials from its electrical conductance more easily measurable at low temperature.
The Persistent Photoconductivity (PPC) effect was studied in individual tin oxide (SnO2) nanobelts as a function of temperature, in air, helium, and vacuum atmospheres, and low temperature Photoluminescence measurements were carried out to study the optical transitions and to determine of the acceptor/donors levels and their best representation inside the band gap. Under ultraviolet (UV) illumination and at temperatures in the range of 200 to 400K we observed a fast and strong enhancement of the photoconductivity, and the maximum value of the photocurrent induced increases as the temperature or the oxygen concentration decreases. By turning off the UV illumination the induced photocurrent decays with lifetimes up to several hours. The photoconductivity and the PPC results were explained by adsorption and desorption of molecular oxygen at the surface of the SnO2 nanobelts. Based on the temperature dependence of the PPC decay an activation energy of 230 meV was found, which corresponds to the energy necessary for thermal ionization of free holes from acceptor levels to the valence band, in agreement with the photoluminescence results presented. The molecular-oxygen recombination with holes is the origin of the PPC effect in metal oxide semiconductors, so that, the PPC effect is not related to the oxygen vacancies, as commonly presented in the literature.
85 - O. Heyer , P. Link , D. Wandner 2011
EuC$_2$ is a ferromagnet with a Curie-temperature of $T_C simeq 15,$K. It is semiconducting with the particularity that the resistivity drops by about 5 orders of magnitude on cooling through $T_C$, which is therefore called a metal-insulator transition. In this paper we study the magnetization, specific heat, thermal expansion, and the resistivity around this ferromagnetic transition on high-quality EuC$_2$ samples. At $T_C$ we observe well defined anomalies in the specific heat $c_p(T)$ and thermal expansion $alpha(T)$ data. The magnetic contributions of $c_p(T)$ and $alpha(T)$ can satisfactorily be described within a mean-field theory, taking into account the magnetization data. In zero magnetic field the magnetic contributions of the specific heat and thermal expansion fulfill a Gruneisen-scaling, which is not preserved in finite fields. From an estimation of the pressure dependence of $T_C$ via Ehrenfests relation, we expect a considerable increase of $T_C$ under applied pressure due to a strong spin-lattice coupling. Furthermore the influence of weak off stoichiometries $delta$ in EuC$_{2 pm delta}$ was studied. It is found that $delta$ strongly affects the resistivity, but hardly changes the transition temperature. In all these aspects, the behavior of EuC$_2$ strongly resembles that of EuO.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا