Do you want to publish a course? Click here

Context-Aware Cross-Attention for Non-Autoregressive Translation

105   0   0.0 ( 0 )
 Added by Liang Ding
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Non-autoregressive translation (NAT) significantly accelerates the inference process by predicting the entire target sequence. However, due to the lack of target dependency modelling in the decoder, the conditional generation process heavily depends on the cross-attention. In this paper, we reveal a localness perception problem in NAT cross-attention, for which it is difficult to adequately capture source context. To alleviate this problem, we propose to enhance signals of neighbour source tokens into conventional cross-attention. Experimental results on several representative datasets show that our approach can consistently improve translation quality over strong NAT baselines. Extensive analyses demonstrate that the enhanced cross-attention achieves better exploitation of source contexts by leveraging both local and global information.



rate research

Read More

State-of-the-art neural machine translation models generate a translation from left to right and every step is conditioned on the previously generated tokens. The sequential nature of this generation process causes fundamental latency in inference since we cannot generate multiple tokens in each sentence in parallel. We propose an attention-masking based model, called Disentangled Context (DisCo) transformer, that simultaneously generates all tokens given different contexts. The DisCo transformer is trained to predict every output token given an arbitrary subset of the other reference tokens. We also develop the parallel easy-first inference algorithm, which iteratively refines every token in parallel and reduces the number of required iterations. Our extensive experiments on 7 translation directions with varying data sizes demonstrate that our model achieves competitive, if not better, performance compared to the state of the art in non-autoregressive machine translation while significantly reducing decoding time on average. Our code is available at https://github.com/facebookresearch/DisCo.
Context-aware machine translation models are designed to leverage contextual information, but often fail to do so. As a result, they inaccurately disambiguate pronouns and polysemous words that require context for resolution. In this paper, we ask several questions: What contexts do human translators use to resolve ambiguous words? Are models paying large amounts of attention to the same context? What if we explicitly train them to do so? To answer these questions, we introduce SCAT (Supporting Context for Ambiguous Translations), a new English-French dataset comprising supporting context words for 14K translations that professional translators found useful for pronoun disambiguation. Using SCAT, we perform an in-depth analysis of the context used to disambiguate, examining positional and lexical characteristics of the supporting words. Furthermore, we measure the degree of alignment between the models attention scores and the supporting context from SCAT, and apply a guided attention strategy to encourage agreement between the two.
In this paper, we present DuTongChuan, a novel context-aware translation model for simultaneous interpreting. This model allows to constantly read streaming text from the Automatic Speech Recognition (ASR) model and simultaneously determine the boundaries of Information Units (IUs) one after another. The detected IU is then translated into a fluent translation with two simple yet effective decoding strategies: partial decoding and context-aware decoding. In practice, by controlling the granularity of IUs and the size of the context, we can get a good trade-off between latency and translation quality easily. Elaborate evaluation from human translators reveals that our system achieves promising translation quality (85.71% for Chinese-English, and 86.36% for English-Chinese), specially in the sense of surprisingly good discourse coherence. According to an End-to-End (speech-to-speech simultaneous interpreting) evaluation, this model presents impressive performance in reducing latency (to less than 3 seconds at most times). Furthermore, we successfully deploy this model in a variety of Baidus products which have hundreds of millions of users, and we release it as a service in our AI platform.
Non-autoregressive translation (NAT) significantly accelerates the inference process via predicting the entire target sequence. However, recent studies show that NAT is weak at learning high-mode of knowledge such as one-to-many translations. We argue that modes can be divided into various granularities which can be learned from easy to hard. In this study, we empirically show that NAT models are prone to learn fine-grained lower-mode knowledge, such as words and phrases, compared with sentences. Based on this observation, we propose progressive multi-granularity training for NAT. More specifically, to make the most of the training data, we break down the sentence-level examples into three types, i.e. words, phrases, sentences, and with the training goes, we progressively increase the granularities. Experiments on Romanian-English, English-German, Chinese-English, and Japanese-English demonstrate that our approach improves the phrase translation accuracy and model reordering ability, therefore resulting in better translation quality against strong NAT baselines. Also, we show that more deterministic fine-grained knowledge can further enhance performance.
87 - Lihua Qian , Hao Zhou , Yu Bao 2020
Recent work on non-autoregressive neural machine translation (NAT) aims at improving the efficiency by parallel decoding without sacrificing the quality. However, existing NAT methods are either inferior to Transformer or require multiple decoding passes, leading to reduced speedup. We propose the Glancing Language Model (GLM), a method to learn word interdependency for single-pass parallel generation models. With GLM, we develop Glancing Transformer (GLAT) for machine translation. With only single-pass parallel decoding, GLAT is able to generate high-quality translation with 8-15 times speedup. Experiments on multiple WMT language directions show that GLAT outperforms all previous single pass non-autoregressive methods, and is nearly comparable to Transformer, reducing the gap to 0.25-0.9 BLEU points.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا