Do you want to publish a course? Click here

Spins of primordial black holes formed in the radiation-dominated phase of the universe: first-order effect

75   0   0.0 ( 0 )
 Added by Tomohiro Harada
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The standard deviation of the initial values of the nondimensional Kerr parameter $a_{*}$ of primordial black holes (PBHs) formed in the radiation-dominated phase of the universe is estimated to the first order of perturbation for the narrow power spectrum. Evaluating the angular momentum at turn around based on linearly extrapolated transfer functions and peak theory, we obtain the expression $sqrt{langle a_{*}^{2} rangle} simeq 4.0times 10^{-3} (M/M_{H})^{-1/3}sqrt{1-gamma^{2}}[1-0.072 log_{10}(beta_{0}(M_{H})/(1.3times 10^{-15}))]^{-1}$, where $M_{H}$, $beta_{0}(M_{H})$, and $gamma$ are the mass within the Hubble horizon at the horizon entry of the overdense region, the fraction of the universe which collapsed to PBHs at the scale of $M_{H}$, and a quantity which characterizes the width of the power spectrum, respectively. This implies that for $Msimeq M_{H}$, the higher the probability of the PBH formation, the larger the standard deviation of the spins, while PBHs of $Mll M_{H}$ formed through near-critical collapse may have larger spins than those of $Msimeq M_{H}$. In comparison to the previous estimate, the new estimate has the explicit dependence on the ratio $M/M_{rm H}$ and no direct dependence on the current dark matter density. On the other hand, it suggests that the first-order effect can be numerically comparable to the second-order one.

rate research

Read More

Angular momentum plays very important roles in the formation of PBHs in the matter-dominated phase if it lasts sufficiently long. In fact, most collapsing masses are bounced back due to centrifugal force, since angular momentum significantly grows before collapse. As a consequence, most of the formed PBHs are rapidly rotating near the extreme value $a_{*}=1$, where $a_{*}$ is the nondimensional Kerr parameter at their formation. The smaller the density fluctuation $sigma_{H}$ at horizon entry is, the stronger the tendency towards the extreme rotation. Combining the effect of angular momentum with that of anisotropy, we estimate the black hole production rate. We find that the production rate suffers from suppression dominantly due to angular momentum for a smaller value of $sigma_{H}$, while due to anisotrpopy for a larger value of $sigma_{H}$. We argue that matter domination significantly enhances the production of PBHs despite the suppression. If the matter-dominated phase does not last so long, the effect of the finite duration significantly suppresses PBH formation and weakens the tendency towards large spins. (abridged)
We investigate primordial black hole formation in the matter-dominated phase of the Universe, where nonspherical effects in gravitational collapse play a crucial role. This is in contrast to the black hole formation in a radiation-dominated era. We apply the Zeldovich approximation, Thornes hoop conjecture, and Doroshkevichs probability distribution and subsequently derive the production probability $beta_{0}$ of primordial black holes. The numerical result obtained is applicable even if the density fluctuation $sigma$ at horizon entry is of the order of unity. For $sigmall 1$, we find a semi-analytic formula $beta_{0}simeq 0.05556 sigma^{5}$, which is comparable with the Khlopov-Polnarev formula. We find that the production probability in the matter-dominated era is much larger than that in the radiation-dominated era for $sigmalesssim 0.05$, while they are comparable with each other for $sigmagtrsim 0.05$. We also discuss how $sigma$ can be written in terms of primordial curvature perturbations.
Primordial black holes in the mass range of ground-based gravitational-wave detectors can comprise a significant fraction of the dark matter. Mass and spin measurements from coalescences can be used to distinguish between an astrophysical or a primordial origin of the binary black holes. In standard scenarios the spin of primordial black holes is very small at formation. However, the mass and spin can evolve through the cosmic history due to accretion. We show that the mass and spin of primordial black holes are correlated in a redshift-dependent fashion, in particular primordial black holes with masses below ${cal O}(30)M_odot$ are likely non-spinning at any redshift, whereas heavier black holes can be nearly extremal up to redshift $zsim10$. The dependence of the mass and spin distributions on the redshift can be probed with future detectors such as the Einstein Telescope. The mass and spin evolution affect the gravitational waveform parameters, in particular the distribution of the final mass and spin of the merger remnant, and that of the effective spin of the binary. We argue that, compared to the astrophysical-formation scenario, a primordial origin of black hole binaries might better explain the spin distribution of merger events detected by LIGO-Virgo, in which the effective spin parameter of the binary is compatible to zero except possibly for few high-mass events. Upcoming results from LIGO-Virgo third observation run might reinforce or weaken these predictions.
Primordial black holes (PBHs) produced in the early Universe have attracted wide interest for their ability to constitute dark matter and explain the compact binary coalescence. We propose a new mechanism of PBH production during first-order phase transitions (PTs) and find that PBHs are naturally produced during PTs model-independently. Because of the randomness of the quantum tunneling, there always exists some probability that the vacuum decay is postponed in a whole Hubble volume. Since the vacuum energy density remains constant while radiation is quickly redshifted in the expanding Universe, the postponed vacuum decay then results in overdense regions, which finally collapse into PBHs as indicated by numerical simulations. Utilizing this result one can obtain mutual predictions and constraints between PBHs and GWs from PTs. The predicted mass function of PBHs is nearly monochromatic. We investigate two typical cases and find that 1) PBHs from a PT constitute all dark matter and GWs peak at $1$Hz, 2) PBHs from a PT can explain the coalescence events observed by LIGO-Virgo collaboration, and meanwhile GWs can explain the common-spectrum process detected by NANOGrav collaboration.
We discuss the possibility of forming primordial black holes during a first-order phase transition in the early Universe. As is well known, such a phase transition proceeds through the formation of true-vacuum bubbles in a Universe that is still in a false vacuum. When there is a particle species whose mass increases significantly during the phase transition, transmission of the corresponding particles through the advancing bubble walls is suppressed. Consequently, an overdensity can build up in front of the walls and become sufficiently large to trigger primordial black hole formation. We track this process quantitatively by solving a Boltzmann equation, and we determine the resulting black hole density and mass distribution as a function of model parameters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا