No Arabic abstract
The European Spallation Source (ESS) accelerator is composed of superconducting elliptical cavities. When the facility is running, the cavities are fed with electrical field from klystrons. Parameters of this field are monitored and controlled by the Low-Level Radio Frequency (LLRF) system. Its main goal is to keep the amplitude and phase at a given set-point. The LLRF system is also responsible for the reference clock distribution. During machine operation the cavities are periodically experiencing strain caused by the Lorentz force, appearing when the beam is passing through the accelerating structures. Even small changes of the physical dimensions of the cavity cause a shift of its resonance frequency. This phenomenon, called detuning, causes significant power losses. It is actively compensated by the LLRF control system, which can physically tune lengths of the accelerating cavities with stepper motors (slow, coarse grained control) and piezoelements (active compensation during operation state). The paper describes implementation and tests of the software supporting various aspects of the LLRF system and cavities management. The Piezo Driver management and monitoring tool is dedicated for piezo controller device. The LO Distribution application is responsible for configuration of the local oscillator. The Cavity Simulator tool was designed to provide access to properties of the hardware device, emulating behaviour of elliptical cavities. IPMI Manager software was implemented to monitor state of MicroTCA.4 crates, which are major part of the LLRF system architecture. All applications have been created using the Experimental Physics and Industrial Control System (EPICS) framework and built in ESS EPICS Environment (E3).
The performance of the LHC depends critically on the accurate measurements of the betatron tunes. The betatron tune values of each LHC beam may be measured without excitation using a newly installed transverse Schottky monitor. A high-level software package written in Java has been developed for the Schottky system. The software allows end users to monitor and control the Schottky system, and provides them with non-destructive and continuous bunch-by-bunch measurements for the tunes, momentum spreads, chromaticities and emittances of the LHC beams. It has been tested with both proton and lead ion beams at the LHC with very successful results.
The European Spallation Source being constructed in Lund, Sweden will provide the user community with a neutron source of unprecedented brightness. By 2025, a suite of 15 instruments will be served by a high-brightness moderator system placed above the spallation target. The ESS infrastructure, consisting of the proton linac, the target station, and the instrument halls, allows for implementation of a second source below the spallation target. We propose to develop a second neutron source with a high-intensity moderator able to (1) deliver a larger total cold neutron flux, (2) provide high intensities at longer wavelengths in the spectral regions of Cold (4-10 AA ), Very Cold (10-40 AA ), and Ultra Cold (several 100 AA ) neutrons, as opposed to Thermal and Cold neutrons delivered by the top moderator. Offering both unprecedented brilliance, flux, and spectral range in a single facility, this upgrade will make ESS the most versatile neutron source in the world and will further strengthen the leadership of Europe in neutron science. The new source will boost several areas of condensed matter research such as imaging and spin-echo, and will provide outstanding opportunities in fundamental physics investigations of the laws of nature at a precision unattainable anywhere else. At the heart of the proposed system is a volumetric liquid deuterium moderator. Based on proven technology, its performance will be optimized in a detailed engineering study. This moderator will be complemented by secondary sources to provide intense beams of Very- and Ultra-Cold Neutrons.
The European Spallation Source (ESS), presently well on its way to completion, will soon provide the most intense neutron beams for multi-disciplinary science. Fortuitously, it will also generate the largest pulsed neutrino flux suitable for the detection of Coherent Elastic Neutrino-Nucleus Scattering (CE$ u$NS), a process recently measured for the first time at ORNLs Spallation Neutron Source. We describe innovative detector technologies maximally able to profit from the order-of-magnitude increase in neutrino flux provided by the ESS, along with their sensitivity to a rich particle physics phenomenology accessible through high-statistics, precision CE$ u$NS measurements.
At the Ibaraki Neutron Medical Research Center, an accelerator-based neutron source for iBNCT (Ibaraki - Boron Neutron Capture Therapy) is being developed using an 8-MeV proton linac and a beryllium-based neutron production target. The proton linac consists of an RFQ and a DTL, which is almost the same as the front part of J-PARC linac. However, here only one high-power klystron is used as the RF source to drive the two cavities, which have quite different Q-values and responses. From June 2016, a cPCI based digital feedback system was applied to the iBNCT accelerator. It serves not only as a controller for the feedback of acceleration fields, but also as a smart operator for the auto-tuning of the two cavities in the meantime, especially during the RF startup process to the full power. The details will be described in this report.
The violation of Baryon Number, $mathcal{B}$, is an essential ingredient for the preferential creation of matter over antimatter needed to account for the observed baryon asymmetry in the universe. However, such a process has yet to be experimentally observed. The HIBEAM/NNBAR %experiment program is a proposed two-stage experiment at the European Spallation Source (ESS) to search for baryon number violation. The program will include high-sensitivity searches for processes that violate baryon number by one or two units: free neutron-antineutron oscillation ($nrightarrow bar{n}$) via mixing, neutron-antineutron oscillation via regeneration from a sterile neutron state ($nrightarrow [n,bar{n}] rightarrow bar{n}$), and neutron disappearance ($nrightarrow n$); the effective $Delta mathcal{B}=0$ process of neutron regeneration ($nrightarrow [n,bar{n}] rightarrow n$) is also possible. The program can be used to discover and characterise mixing in the neutron, antineutron, and sterile neutron sectors. The experiment addresses topical open questions such as the origins of baryogenesis, the nature of dark matter, and is sensitive to scales of new physics substantially in excess of those available at colliders. A goal of the program is to open a discovery window to neutron conversion probabilities (sensitivities) by up to three orders of magnitude compared with previous searches. The opportunity to make such a leap in sensitivity tests should not be squandered. The experiment pulls together a diverse international team of physicists from the particle (collider and low energy) and nuclear physics communities, while also including specialists in neutronics and magnetics.