Do you want to publish a course? Click here

Invariant chains in algebra and discrete geometry

118   0   0.0 ( 0 )
 Added by Tim R\\\"omer
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We relate finite generation of cones, monoids, and ideals in increasing chains (the local situation) to equivariant finite generation of the corresponding limit objects (the global situation). For cones and monoids there is no analogue of Noetherianity as in the case of ideals and we demonstrate this in examples. As a remedy we find local-global correspondences for finite generation. These results are derived from a more general framework that relates finite generation under closure operations to equivariant finite generation under general families of maps. We also give a new proof that non-saturated Inc-invariant chains stabilize, closing a gap in the literature.



rate research

Read More

Manifold submetries of the round sphere are a class of partitions of the round sphere that generalizes both singular Riemannian foliations, and the orbit decompositions by the orthogonal representations of compact groups. We exhibit a one-to-one correspondence between such manifold submetries and maximal Laplacian algebras, thus solving the Inverse Invariant Theory problem for this class of partitions. Moreover, a solution to the analogous problem is provided for two smaller classes, namely orthogonal representations of finite groups, and transnormal systems with closed leaves.
131 - Jaeho Shin 2019
There is a trinity relationship between hyperplane arrangements, matroids and convex polytopes. We expand it as resolving the complexity issue expected by Mnevs universality theorem and conduct combinatorializing so the theory over fields becomes realization of our combinatorial theory. A main theorem is that for n less than or equal to 9 a specific and general enough kind of matroid tilings in the hypersimplex Delta(3,n) extend to matroid subdivisions of Delta(3,n) with the bound n=9 sharp. As a straightforward application to realizable cases, we solve an open problem in algebraic geometry proposed in 2008.
A gaussoid is a combinatorial structure that encodes independence in probability and statistics, just like matroids encode independence in linear algebra. The gaussoid axioms of Lnenicka and Matus are equivalent to compatibility with certain quadratic relations among principal and almost-principal minors of a symmetric matrix. We develop the geometric theory of gaussoids, based on the Lagrangian Grassmannian and its symmetries. We introduce oriented gaussoids and valuated gaussoids, thus connecting to real and tropical geometry. We classify small realizable and non-realizable gaussoids. Positive gaussoids are as nice as positroids: they are all realizable via graphical models.
220 - David Jekel , Avi Levy , Will Dana 2016
We propose an algebraic framework for generalized graph Laplacians which unifies the study of resistor networks, the critical group, and the eigenvalues of the Laplacian and adjacency matrices. Given a graph with boundary $G$ together with a generalized Laplacian $L$ with entries in a commutative ring $R$, we define a generalized critical group $Upsilon_R(G,L)$. We relate $Upsilon_R(G,L)$ to spaces of harmonic functions on the network using the Hom, Tor, and Ext functors of homological algebra. We study how these algebraic objects transform under combinatorial operations on the network $(G,L)$, including harmonic morphisms, layer-stripping, duality, and symmetry. In particular, we use layer-stripping operations from the theory of resistor networks to systematize discrete harmonic continuation. This leads to an algebraic characterization of the graphs with boundary that can be completely layer-stripped, an algorithm for simplifying computation of $Upsilon_R(G,L)$, and upper bounds for the number of invariant factors in the critical group and the multiplicity of Laplacian eigenvalues in terms of geometric quantities.
We study conditional independence (CI) models in statistical theory, in the case of discrete random variables, from the point of view of algebraic geometry and matroid theory. Any CI model with hidden random variables corresponds to a variety defined by certain determinantal conditions on a matrix whose entries are probabilities of events involving the observed random variables. We show that any CI variety, and more generally any hypergraph variety, admits a matroid stratification. Our main motivation for studying decompositions of CI varieties is the realizability problem: given a collection of CI relations, the goal is to determine the existence of random variables that satisfy these constraints and violates the rest. We show that the realization spaces of CI models and the matroid varieties in their decompositions are closely related. We use ideas from incidence geometry, in particular point and line configurations, to find minimal decompositions of general hypergraph varieties in terms of matroid varieties, which are not necessarily irreducible by Mnev--Sturmfels universality theorem, and may have arbitrary singularities. We focus on various families of hypergraph varieties for which we explicitly compute an irredundant irreducible decomposition. Our main findings in this direction are threefold: (1) we describe minimal matroids of such hypergraphs; (2) we prove that the varieties of these matroids are irreducible and their union is the hypergraph variety; and (3) we show that every such matroid is realizable over real numbers. Our decomposition strategy gives immediate matroid interpretations of the irreducible components of many families of CI varieties in algebraic statistics, and unravels the symmetric structures in CI varieties which hugely simplifies the computations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا