Do you want to publish a course? Click here

Properties of gas phases around cosmic filaments at z=0 in the Illustris-TNG simulation

63   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the study of gas phases around cosmic-web filaments detected in the TNG300-1 hydro-dynamical simulation at redshift z=0. We separate the gas in five different phases according to temperature and density. We show that filaments are essentially dominated by gas in the warm-hot intergalactic medium (WHIM), which accounts for more than 80% of the baryon budget at $r sim 1$ Mpc. Apart from WHIM gas, cores of filaments ($r<1$ Mpc) also host large contributions other hotter and denser gas phases, whose fractions depend on the filament population. By building temperature and pressure profiles, we find that gas in filaments is isothermal up to $r sim 1.5$ Mpc, with average temperatures of T_core = $4-13 times 10^5$ K, depending on the large scale environment. Pressure at cores of filaments is on average P_core = $4-12 times 10^{-7}$ keV/cm^3, which is ~1000 times lower than pressure measured in observed clusters. We also estimate that the observed Sunyaev-Zeldovich (SZ) signal from cores of filaments should range between $0.5 < y < 4.1 times 10^{-8}$, and these results are compared with recent observations. Our findings show that the state of the gas in filaments depend on the presence of haloes, and on the large scale environment.



rate research

Read More

We present a comprehensive study of the distribution of matter around different populations of filaments, using the IllustrisTNG simulation at z=0. We compute the dark matter (DM), gas, and stellar radial density profiles of filaments, and we characterise the distribution of the baryon fraction in these structures. We find that baryons exactly follow the underlying DM distribution only down to r~7 Mpc to the filament spines. At shorter distances (r<7 Mpc) the baryon fraction profile of filaments departs from the cosmic value Omega_b/Omega_m. While in the r~0.7 - 7 Mpc radial domain this departure is due to the radial accretion of WHIM gas towards the filament cores (creating an excess of baryons with respect to the cosmic fraction), the cores of filaments (r<0.7 Mpc) show instead a clear baryon depletion, quantified by a depletion factor of Y_b = 0.63-0.68. The analysis of the efficiency of AGN feedback events in filaments reveals that they are potentially powerful enough to eject gas outside of the gravitational potential wells of filaments. We show that the large-scale environment (i.e. denser vs less-dense, hotter vs colder regions) has a non-negligible effect on the absolute values of the DM, gas, and stellar densities around filaments. Nevertheless, the relative distribution of baryons with respect to the underlying DM density field is found to be independent from the filament population. Finally, we provide scaling relations between gas density, temperature, and pressure for the different populations of cosmic filaments. We compare these relations to those pertaining to clusters of galaxies, and find that these cosmic structures occupy separate regions of the density-temperature and density-pressure planes.
A large portion of the baryons at low redshifts are still missing from detection. Most of the missing baryons are believed to reside in large scale cosmic filaments. Understanding the distribution of baryons in filaments is crucial for the search for missing baryons. We investigate the properties of cosmic filaments since $z=4.0$ in a cosmological hydrodynamic simulation, focusing on the density and temperature profiles perpendicular to the filament spines. Our quantitative evaluation confirm the rapid growth of thick and prominent filaments after $z=2$. We find that the local linear density of filaments shows correlation with the local diameter since $z=4.0$. The averaged density profiles of both dark matter and baryonic gas in filaments of different width show self-similarity, and can be described by an isothermal single-beta model. The typical gas temperature increases as the filament width increasing, and is hotter than $10^6$ K for filaments with width $D_{fil} gtrsim 4.0 rm{Mpc}$, which would be the optimal targets for the search of missing baryons via thermal Sunyaev-Zeldovich (SZ) effect. The temperature rises significantly from the boundary to the inner core regime in filaments with $D_{fil} gtrsim 4.0 rm{Mpc}$, probably due to heating by accretion shock, while the temperature rise gently in filaments with $D_{fil}< 4.0 rm{Mpc}$.
We investigate the spin evolution of dark matter haloes and their dependence on the number of connected filaments from the cosmic web at high redshift (spin-filament relation hereafter). To this purpose, we have simulated $5000$ haloes in the mass range $5times10^{9}h^{-1}M_{odot}$ to $5times10^{11}h^{-1}M_{odot}$ at $z=3$ in cosmological N-body simulations. We confirm the relation found by Prieto et al. 2015 where haloes with fewer filaments have larger spin. We also found that this relation is more significant for higher halo masses, and for haloes with a passive (no major mergers) assembly history. Another finding is that haloes with larger spin or with fewer filaments have their filaments more perpendicularly aligned with the spin vector. Our results point to a picture in which the initial spin of haloes is well described by tidal torque theory and then gets subsequently modified in a predictable way because of the topology of the cosmic web, which in turn is given by the currently favoured LCDM model. Our spin-filament relation is a prediction from LCDM that could be tested with observations.
We study the alignments of satellite galaxies, and their anisotropic distribution, with respect to location and orientation of their host central galaxy in MassiveBlack-II and IllustrisTNG simulations. We find that: the shape of the satellite system in halos of mass ($> 10^{13}h^{-1}M_{odot}$) is well aligned with the shape of the central galaxy at $z=0.06$ with the mean alignment between the major axes being $sim Delta theta = 12^{circ}$ when compared to a uniform random distribution; that satellite galaxies tend to be anisotropically distributed along the major axis of the central galaxy with a stronger alignment in halos of higher mass or luminosity; and that the satellite distribution is more anisotropic for central galaxies with lower star formation rate, which are spheroidal, and for red central galaxies.Radially we find that satellites tend to be distributed along the major axis of the shape of the stellar component of central galaxies at smaller scales and the dark matter component on larger scales. We find that the dependence of satellite anisotropy on central galaxy properties and the radial distance is similar in both the simulations with a larger amplitude in MassiveBlack-II. The orientation of satellite galaxies tends to point toward the location of the central galaxy at small scales and this correlation decreases with increasing distance, and the amplitude of satellite alignment is higher in high mass halos. However, the projected ellipticities do not exhibit a scale-dependent radial alignment, as has been seen in some observational measurements.
We investigate the alignment of galaxies and haloes relative to cosmic web filaments using the EAGLE hydrodynamical simulation. We identify filaments by applying the NEXUS+ method to the mass distribution and the Bisous formalism to the galaxy distribution. Both web finders return similar filamentary structures that are well aligned and that contain comparable galaxy populations. EAGLE haloes have an identical spin alignment with filaments as their counterparts in dark matter only simulations: a complex mass dependent trend with low mass haloes spinning preferentially parallel to and high mass haloes spinning preferentially perpendicular to filaments. In contrast, galaxy spins do not show such a spin transition and have a propensity for perpendicular alignments at all masses, with the degree of alignment being largest for massive galaxies. This result is valid for both NEXUS+ and Bisous filaments. When splitting by morphology, we find that elliptical galaxies show a stronger orthogonal spin--filament alignment than spiral galaxies of similar mass. The same is true of their haloes, with the host haloes of elliptical galaxies having a larger degree of orthogonal alignment than the host haloes of spirals. Due to the misalignment between galaxy shape and spin, galaxy minor axes are oriented differently with filaments than galaxy spins. We find that the galaxies whose minor axis is perpendicular to a filament are much better aligned with their host haloes. This suggests that many of the same physical processes determine both the galaxy--filament and the galaxy--halo alignments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا