Little is known about dark matter beyond the fact that it does not interact with the standard model or itself, or else does so incredibly weakly. A natural candidate, given the history of no-go theorems against their interactions, are higher spin fields. Here we develop the scenario of higher spin (spin $s>2$) dark matter. We show that the gravitational production of superheavy bosonic higher spin fields during inflation can provide all the dark matter we observe today. We consider the observable signatures, and find a potential characteristic signature of bosonic higher spin dark matter in directional direct detection; we find that there are distinct spin-dependent contributions to the double differential recoil rate, which complement the oscillatory imprint of higher spin fields in the cosmic microwave background. We consider the extension to higher spin fermions and supersymmetric higher spins.