Do you want to publish a course? Click here

Unveiling early black hole growth with multi-frequency gravitational wave observations

82   0   0.0 ( 0 )
 Added by Rosa Valiante Miss
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Third Generation ground based Gravitational Wave Interferometers, like the Einstein Telescope (ET), Cosmic Explorer (CE), and the Laser Interferometer Space Antenna (LISA) will detectcoalescing binary black holes over a wide mass spectrum and across all cosmic epochs. We track the cosmological growth of the earliest light and heavy seeds that swiftly transit into the supermassive domain using a semi analytical model for the formation of quasars at $z=6.4$, 2 and $0.2$, in which we follow black hole coalescences driven by triple interactions. We find that light seed binaries of several $10^2$ M$_odot$ are accessible to ET with a signal-to-noise ratio ($S/N$) of $10-20$ at $6<z<15$. They then enter the LISA domain with larger $S/N$ as they grow toa few $10^4$ M$_odot$. Detecting their gravitational signal would provide first time evidence that light seeds form, grow and dynamically pair during galaxy mergers. The electromagnetic emission of accreting black holes of similar mass and redshift is too faint to be detected even for the deepest future facilities. ET will be our only chance to discover light seeds forming at cosmicdawn. At $2<z<8$, we predict a population of starved binaries, long-lived marginally-growing light seed pairs, to be loud sources in the ET bandwidth ($S/N>20$). Mergers involving heavy seeds ($sim 10^5 M_odot - 10^6 M_odot$) would be within reach up to $z=20$ in the LISA frequency domain. The lower-z model predicts $11.25(18.7)$ ET(LISA) events per year, overall.



rate research

Read More

LIGO and Virgo have recently observed a number of gravitational wave (GW) signals that are fully consistent with being emitted by binary black holes described by general relativity. However, there are theoretical proposals of exotic objects that can be massive and compact enough to be easily confused with black holes. Nevertheless, these objects differ from black holes in having nonzero tidal deformabilities, which can allow one to distinguish binaries containing such objects from binary black holes using GW observations. Using full Bayesian parameter estimation, we investigate the possibility of constraining the parameter space of such black hole mimickers with upcoming GW observations. Employing perfect fluid stars with a polytropic equation of state as a simple model that can encompass a variety of possible black hole mimickers, we show how the observed masses and tidal deformabilities of a binary constrain the equation of state. We also show how such constraints can be used to rule out some simple models of boson stars.
The observation of gravitational-wave signals from merging black-hole binaries enables direct measurement of the properties of the black holes. An individual observation allows measurement of the black-hole masses, but only limited information about either the magnitude or orientation of the black hole spins is available, primarily due to the degeneracy between measurements of spin and binary mass ratio. Using the first six black-hole merger observations, we are able to constrain the distribution of black-hole spins. We perform model selection between a set of models with different spin population models combined with a power-law mass distribution to make inferences about the spin distribution. We assume a fixed power-law mass distribution on the black holes, which is supported by the data and provides a realistic distribution of binary mass-ratio. This allows us to accurately account for selection effects due to variations in the signal amplitude with spin magnitude, and provides an improved inference on the spin distribution. We conclude that the first six LIGO and Virgo observations (Abbott et al. 2016a, 2017a,b,c) disfavour highly spinning black holes against low spins by an odds-ratio of 15:1; thus providing strong constraints on spin magnitudes from gravitational-wave observations. Furthermore, we are able to rule out a population of binaries with completely aligned spins, even when the spins of the individual black holes are low, at an odds ratio of 22,000:1, significantly strengthening earlier evidence against aligned spins (Farr et al. 2017). These results provide important information that will aid in our understanding on the formation processes of black-holes.
Coalescing binary black holes emit anisotropic gravitational radiation. This causes a net emission of linear momentum that produces a gradual acceleration of the source. As a result, the final remnant black hole acquires a characteristic velocity known as recoil velocity or gravitational kick. The symmetries of gravitational wave emission are reflected in the interactions of the gravitational wave modes emitted by the binary. In this work we make use of the rich information encoded in the higher-order modes of the gravitational wave emission to infer the component of the kick along the line-of-sight (or textit{radial kick}). We do this by performing parameter inference on simulated signals given by numerical relativity waveforms for non-spinning binaries using numerical relativity templates of aligned-spin (non-precessing) binary black holes. We find that for suitable sources, namely those with mass ratio $qgeq 2$ and total mass $M sim 100M_odot$, and for modest radial kicks of $120km/s$, the $90%$ credible intervals of our posterior probability distributions can exclude a zero kick at a signal-to-noise ratio of $15$; using a single Advanced LIGO detector working at its early sensitivity. The measurement of a non-zero radial kick component would provide the first observational signature of net transport of linear momentum by gravitational waves away from their source.
104 - Alberto Sesana 2017
Soon after the observation of the first black hole binary (BHB) by advanced LIGO (aLIGO), GW150914, it was realised that such a massive system would have been observable in the milli-Hz (mHz) band few years prior to coalescence. Operating in the frequency range 0.1-100 mHz, the Laser Interferometer Space Antenna (LISA) can potentially detect up to thousands inspiralling BHBs, based on the coalescence rates inferred from the aLIGO first observing run (O1). The vast majority of them (those emitting at $f<10$ mHz) will experience only a minor frequency drift during LISA lifetime, resulting in signals similar to those emitted by galactic white dwarf binaries. At $f>10$ mHz however, several of them will sweep through the LISA band, eventually producing loud coalescences in the audio-band probed by aLIGO. This contribution reviews the scientific potential of these new class of LISA sources which, in the past few months, has been investigated in several contexts, including multi-messenger and multi-band gravitational wave astronomy, BHB astrophysics, tests of alternative theories of gravity and cosmography.
531 - P. Demorest 2009
Gravitational waves (GWs) are fluctuations in the fabric of spacetime predicted by Einsteins theory of general relativity. Using a collection of millisecond pulsars as high-precision clocks, the nanohertz band of this radiation is likely to be directly detected within the next decade. Nanohertz-frequency GWs are expected to be emitted by mergers of massive black hole binary systems, and potentially also by cosmic strings or superstrings formed in the early Universe. Direct detection of GWs will open a new window to the Universe, and provide astrophysical information inaccessible via electromagnetic observations. In this paper, we describe the potential sources of low-frequency GWs and the current status and key advances needed for the detection and exploitation of GWs through pulsar timing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا