No Arabic abstract
Magnetic tunnel junctions operating in the superparamagnetic regime are promising devices in the field of probabilistic computing, which is suitable for applications like high-dimensional optimization or sampling problems. Further, random number generation is of interest in the field of cryptography. For such applications, a devices uncorrelated fluctuation time-scale can determine the effective system speed. It has been theoretically proposed that a magnetic tunnel junction designed to have only easy-plane anisotropy provides fluctuation rates determined by its easy-plane anisotropy field, and can perform on nanosecond or faster time-scale as measured by its magnetoresistances autocorrelation in time. Here we provide experimental evidence of nanosecond scale fluctuations in a circular shaped easy-plane magnetic tunnel junction, consistent with finite-temperature coupled macrospin simulation results and prior theoretical expectations. We further assess the degree of stochasticity of such signal.
We present a study of the magnetic dynamics associated with nanosecond scale magnetic switching driven by the spin Hall effect in 3-terminal nanoscale magnetic tunnel junctions (3T-MTJs) with in-plane magnetization. Utilizing fast pulse measurements in a variety of material stacks and detailed micromagnetic simulations, we demonstrate that this unexpectedly fast and reliable magnetic reversal is facilitated by the self-generated Oersted field, and the short-pulse energy efficiency can be substantially enhanced by micromagnetic curvature in the magnetic free layer. The sign of the Oersted field is essential for this enhancement --- in simulations in which we artificially impose a field-like torque with a sign opposite to the effect of the Oersted field, the result is a much slower and stochastic switching process that is reminiscent of the so-called incubation delay in conventional 2-terminal spin-torque-switched MTJs.
Magnetic tunnel junctions (MTJs) are basic building blocks for devices such as magnetic random access memories (MRAMs). The relevance for modern computation of non-volatile high-frequency memories makes ac-transport measurements of MTJs crucial for exploring this regime. Here we demonstrate a frequency-mediated effect in which the tunnel magnetoimpedance reverses its sign in a classical Co/Al{_2}O{_3}/NiFe MTJ, whereas we only observe a gradual decrease of tunnel magnetophase. Such effects are explained by the capacitive coupling of a parallel resistor and capacitor in the equivalent circuit model of the MTJ. Furthermore, we report a positive tunnel magnetocapacitance effect, suggesting the presence of a spin-capacitance at the two ferromagnet/tunnel-barrier interfaces. Our results are important for understanding spin transport phenomena at the high frequency regime, in which the spin-polarized charge accumulation at the two interfaces plays a crucial role.
We investigate fast-pulse switching of in-plane-magnetized magnetic tunnel junctions (MTJs) within 3-terminal devices in which spin-transfer torque is applied to the MTJ by the giant spin Hall effect. We measure reliable switching, with write error rates down to $10^{-5}$, using current pulses as short as just 2 ns in duration. This represents the fastest reliable switching reported to date for any spin-torque-driven magnetic memory geometry, and corresponds to a characteristic time scale that is significantly shorter than predicted possible within a macrospin model for in-plane MTJs subject to thermal fluctuations at room temperature. Using micromagnetic simulations, we show that in the 3-terminal spin-Hall devices the Oersted magnetic field generated by the pulse current strongly modifies the magnetic dynamics excited by the spin-Hall torque, enabling this unanticipated performance improvement. Our results suggest that in-plane MTJs controlled by Oersted-field-assisted spin-Hall torque are a promising candidate for both cache memory applications requiring high speed and for cryogenic memories requiring low write energies.
We demonstrate a voltage-controlled exchange bias effect in CoFeB/MgO/CoFeB magnetic tunnel junctions that is related to the interfacial Fe(Co)Ox formed between the CoFeB electrodes and the MgO barrier. The unique combination of interfacial antiferromagnetism, giant tunneling magnetoresistance, and sharp switching of the perpendicularly-magnetized CoFeB allows sensitive detection of the exchange bias. It is found that the exchange bias field can be isothermally controlled by magnetic fields at low temperatures. More importantly, the exchange bias can also be effectively manipulated by the electric field applied to the MgO barrier due to the voltage-controlled antiferromagnetic anisotropy in this system.
The thermal spin-transfer torque (TSTT) is an effect to switch the magnetic free layer in a magnetic tunnel junction by a temperature gradient only. We present ab initio calculations of the TSTT. In particular, we discuss the influence of magnetic layer composition by considering $text{Fe}_text{x}text{Co}_{text{1-x}}$ alloys. Further, we compare the TSTT to the bias voltage driven STT and discuss the requirements for a possible thermal switching. For example, only for very thin barriers of 3 monolayers MgO a thermal switching is imaginable. However, even for such a thin barrier the TSTT is still too small for switching at the moment and further optimization is needed. In particular, the TSTT strongly depends on the composition of the ferromagentic layer. In our current study it turns out that at the chosen thickness of the ferromagnetic layer pure Fe gives the highest thermal spin-transfer torque.