No Arabic abstract
Based on the second Gaia data release (DR2), combined with the LAMOST and APOGEE spectroscopic surveys, we study the kinematics and metallicity distribution of the high-velocity stars that have a relative speed of at least 220 ${rm km s^{-1}}$ with respect to the local standard of rest in the Galaxy. The rotational velocity distribution of the high-velocity stars with [Fe/H] $>-1.0$ dex can be well described by a two-Gaussian model, with peaks at $V_{phi}sim +164.2pm0.7$ and $V_{phi}sim +3.0pm0.3$ ${rm km s^{-1}}$, associated with the thick disk and halo, respectively. This implies that there should exist a high-velocity thick disk (HVTD) and a metal-rich stellar halo (MRSH) in the Galaxy. The HVTD stars have the same position as the halo in the Toomre diagram and but show the same rotational velocity and metallicity as the canonical thick disk. The MRSH stars have basically the same rotational velocity, orbital eccentricity, and position in the Lindblad and Toomre diagram as the canonical halo stars, but they are more metal-rich. Furthermore, the metallicity distribution function (MDF) of our sample stars are well fitted by a four-Gaussian model, associated with the outer-halo, inner-halo, MRSH, and HVTD, respectively. Chemical and kinematic properties and age imply that the MRSH and HVTD stars may form in situ.
Based on the second Gaia data release (DR2) and APOGEE (DR16) spectroscopic surveys, wedefined two kinds of star sample: high-velocity thick disk (HVTD) with $v{phi}>90km/s$ and metal-richstellar halo (MRSH) with $v{phi}<90km/s$. Due to high resolution spectra data from APOGEE (DR16),we can analyze accurately the element abundance distribution of HVTD and MRSH. These elementsabundance constituted a multidimensional data space, and we introduced an algorithm method forprocessing multi-dimensional data to give the result of dimensionality reduction clustering. Accordingto chemical properties analysis, we derived that some HVTD stars could origin from the thin disk,and some MRSH stars from dwarf galaxies, but those stars which have similar chemical abundancecharacteristics in both sample may form in-situ.
We aim to characterize high-velocity (HiVel) stars in the solar vicinity both chemically and kinematically using the fourth data release of the RAdial Velocity Experiment (RAVE). We used a sample of 57 HiVel stars with Galactic rest-frame velocities larger than 275 km s$^{-1}$. With 6D position and velocity information, we integrated the orbits of the HiVel stars and found that, on average, they reach out to 13 kpc from the Galactic plane and have relatively eccentric orbits consistent with the Galactic halo. Using the stellar parameters and [$alpha$/Fe] estimates from RAVE, we found the metallicity distribution of the HiVel stars peak at [M/H] = -1.2 dex and is chemically consistent with the inner halo. There are a few notable exceptions that include a hypervelocity star (HVS) candidate, an extremely high-velocity bound halo star, and one star that is kinematically consistent with the halo but chemically consistent with the disk. High-resolution spectra were obtained for the metal-rich HiVel star candidate and the second highest velocity star in the sample. Using these high-resolution data, we report the discovery of a metal-rich halo star that has likely been dynamically ejected into the halo from the Galactic thick disk. This discovery could aid in explaining the assembly of the most metal-rich component of the Galactic halo.
The nature of the Sombrero galaxy (M 104 = NGC 4594) has remained elusive despite many observational studies at a variety of wavelengths. Here we present Hubble Space Telescope imaging of two fields at $sim$16 and 33 kpc along the minor axis to examine stellar metallicity gradients in the extended spheroid. We use this imaging, extending more than 2 mag below the tip of the red giant branch (TRGB), in combination with artificial star tests to forward model observed color-magnitude diagrams (CMDs), measuring metallicity distribution functions (MDFs) at different radii along the minor axis. An important and unexpected result is that the halo of the Sombrero is strikingly metal-rich: even the outer field, located at $sim$17 effective radii of the bulge, has a median metallicity [Z/H]$sim$-0.15 and the fraction of stars with [Z/H]<-1.0 is negligible. This is unprecedented among massive galaxy halos studied to date, even among giant ellipticals. We find significant radial metallicity gradients, characterized by an increase in the fraction of metal-poor stars with radius and a gradient in median metallicity of $sim$-0.01 dex/kpc. The density profile is well fit by power laws with slopes that exhibit a dependence on metallicity, with flatter slopes for more metal-poor stars. We discuss our results in the context of recent stellar MDF studies of other nearby galaxies and potential formation scenarios for the Sombrero galaxy.
We compared the number of faint stars detected in deep survey fields with the current stellar distribution model of the Galaxy and found that the detected number in the H band is significantly smaller than the predicted number. This indicates that M-dwarfs, the major component, are fewer in the halo and the thick disk. We used archived data of several surveys in both the north and south field of GOODS (Great Observatories Origins Deep Survey), MODS in GOODS-N, and ERS and CANDELS in GOODS-S. The number density of M-dwarfs in the halo has to be 20+/-13% relative to that in the solar vicinity, in order for the detected number of stars fainter than 20.5 mag in the H band to match with the predicted value from the model. In the thick disk, the number density of M-dwarfs must be reduced (52+/-13%) or the scale height must be decreased (~600 pc). Alternatively, overall fractions of the halo and thick disks can be significantly reduced to achieve the same effect, because our sample mainly consists of faint M-dwarfs. Our results imply that the M-dwarf population in regions distant from the Galactic plane is significantly smaller than previously thought. We then discussed the implications this has on the suitability of the model predictions for the prediction of non-companion faint stars in direct imaging extrasolar planet surveys by using the best-fit number densities.
We map the stellar structure of the Galactic thick disk and halo by applying color-magnitude diagram (CMD) fitting to photometric data from the SEGUE survey, allowing, for the first time, a comprehensive analysis of their structure at both high and low latitudes using uniform SDSS photometry. Incorporating photometry of all relevant stars simultaneously, CMD fitting bypasses the need to choose single tracer populations. Using old stellar populations of differing metallicities as templates we obtain a sparse 3D map of the stellar mass distribution at |Z|>1 kpc. Fitting a smooth Milky Way model comprising exponential thin and thick disks and an axisymmetric power-law halo allows us to constrain the structural parameters of the thick disk and halo. The thick-disk scale height and length are well constrained at 0.75+-0.07 kpc and 4.1+-0.4 kpc, respectively. We find a stellar halo flattening within ~25 kpc of c/a=0.88+-0.03 and a power-law index of 2.75+-0.07 (for 7<R_{GC}<~30 kpc). The model fits yield thick-disk and stellar halo densities at the solar location of rho_{thick,sun}=10^{-2.3+-0.1} M_sun pc^{-3} and rho_{halo,sun}=10^{-4.20+-0.05} M_sun pc^{-3}, averaging over any substructures. Our analysis provides the first clear in situ evidence for a radial metallicity gradient in the Milky Ways stellar halo: within R<~15 kpc the stellar halo has a mean metallicity of [Fe/H]=-1.6, which shifts to [Fe/H]=-2.2 at larger radii. Subtraction of the best-fit smooth and symmetric model from the overall density maps reveals a wealth of substructures at all latitudes, some attributable to known streams and overdensities, and some new. A simple warp cannot account for the low latitude substructure, as overdensities occur simultaneously above and below the Galactic plane. (abridged)