Do you want to publish a course? Click here

Apps Against the Spread: Privacy Implications and User Acceptance of COVID-19-Related Smartphone Apps on Three Continents

309   0   0.0 ( 0 )
 Added by Christine Utz
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The COVID-19 pandemic has fueled the development of smartphone applications to assist disease management. Many corona apps require widespread adoption to be effective, which has sparked public debates about the privacy, security, and societal implications of government-backed health applications. We conducted a representative online study in Germany (n = 1,003), the US (n = 1,003), and China (n = 1,019) to investigate user acceptance of corona apps, using a vignette design based on the contextual integrity framework. We explored apps for contact tracing, symptom checks, quarantine enforcement, health certificates, and mere information. Our results provide insights into data processing practices that foster adoption and reveal significant differences between countries, with user acceptance being highest in China and lowest in the US. Chinese participants prefer the collection of personalized data, while German and US participants favor anonymity. Across countries, contact tracing is viewed more positively than quarantine enforcement, and technical malfunctions negatively impact user acceptance.



rate research

Read More

COVID-19 has fundamentally disrupted the way we live. Government bodies, universities, and companies worldwide are rapidly developing technologies to combat the COVID-19 pandemic and safely reopen society. Essential analytics tools such as contact tracing, super-spreader event detection, and exposure mapping require collecting and analyzing sensitive user information. The increasing use of such powerful data-driven applications necessitates a secure, privacy-preserving infrastructure for computation on personal data. In this paper, we analyze two such computing infrastructures under development at the University of Illinois at Urbana-Champaign to track and mitigate the spread of COVID-19. First, we present Safer Illinois, a system for decentralized health analytics supporting two applications currently deployed with widespread adoption: digital contact tracing and COVID-19 status cards. Second, we introduce the RokWall architecture for privacy-preserving centralized data analytics on sensitive user data. We discuss the architecture of these systems, design choices, threat models considered, and the challenges we experienced in developing production-ready systems for sensitive data analysis.
Contact tracing is an essential tool for public health officials and local communities to fight the spread of novel diseases, such as for the COVID-19 pandemic. The Singaporean government just released a mobile phone app, TraceTogether, that is designed to assist health officials in tracking down exposures after an infected individual is identified. However, there are important privacy implications of the existence of such tracking apps. Here, we analyze some of those implications and discuss ways of ameliorating the privacy concerns without decreasing usefulness to public health. We hope in writing this document to ensure that privacy is a central feature of conversations surrounding mobile contact tracing apps and to encourage community efforts to develop alternative effective solutions with stronger privacy protection for the users. Importantly, though we discuss potential modifications, this document is not meant as a formal research paper, but instead is a response to some of the privacy characteristics of direct contact tracing apps like TraceTogether and an early-stage Request for Comments to the community. Date written: 2020-03-24 Minor correction: 2020-03-30
Digital contact tracing apps for COVID, such as the one developed by Google and Apple, need to estimate the risk that a user was infected during a particular exposure, in order to decide whether to notify the user to take precautions, such as entering into quarantine, or requesting a test. Such risk score models contain numerous parameters that must be set by the public health authority. In this paper, we show how to automatically learn these parameters from data. Our method needs access to exposure and outcome data. Although this data is already being collected (in an aggregated, privacy-preserving way) by several health authorities, in this paper we limit ourselves to simulated data, so that we can systematically study the different factors that affect the feasibility of the approach. In particular, we show that the parameters become harder to estimate when there is more missing data (e.g., due to infections which were not recorded by the app), and when there is model misspecification. Nevertheless, the learning approach outperforms a strong manually designed baseline. Furthermore, the learning approach can adapt even when the risk factors of the disease change, e.g., due to the evolution of new variants, or the adoption of vaccines.
Contact tracing apps are powerful software tools that can help control the spread of COVID-19. In this article, we evaluated 53 COVID-19 contact tracing apps found on the Google Play Store in terms of their usage, rating, access permission, and user privacy. For each app included in the study, we identified the country of origin, number of downloads, and access permissions to further understand the attributes and ratings of the apps. Our results show that contact tracing apps had low overall ratings and nearly 40% of the included apps were requesting dangerous access permission including access to storage, media files, and camera permissions. We also found that user adoption rates were inversely correlated to access permission requirements. To the best of our knowledge, our article summarizes the most extensive collection of contact tracing apps for COVID-19. We recommend that future contact tracing apps should be more transparent in permission requirements and should provide justification for permissions requested to preserve the app users privacy.
How to contain the spread of the COVID-19 virus is a major concern for most countries. As the situation continues to change, various countries are making efforts to reopen their economies by lifting some restrictions and enforcing new measures to prevent the spread. In this work, we review some approaches that have been adopted to contain the COVID-19 virus such as contact tracing, clusters identification, movement restrictions, and status validation. Specifically, we classify available techniques based on some characteristics such as technology, architecture, trade-offs (privacy vs utility), and the phase of adoption. We present a novel approach for evaluating privacy using both qualitative and quantitative measures of privacy-utility assessment of contact tracing applications. In this new method, we classify utility at three (3) distinct levels: no privacy, 100% privacy, and at k where k is set by the system providing the utility or privacy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا