FaceLeaks: Inference Attacks against Transfer Learning Models via Black-box Queries


Abstract in English

Transfer learning is a useful machine learning framework that allows one to build task-specific models (student models) without significantly incurring training costs using a single powerful model (teacher model) pre-trained with a large amount of data. The teacher model may contain private data, or interact with private inputs. We investigate if one can leak or infer such private information without interacting with the teacher model directly. We describe such inference attacks in the context of face recognition, an application of transfer learning that is highly sensitive to personal privacy. Under black-box and realistic settings, we show that existing inference techniques are ineffective, as interacting with individual training instances through the student models does not reveal information about the teacher. We then propose novel strategies to infer from aggregate-level information. Consequently, membership inference attacks on the teacher model are shown to be possible, even when the adversary has access only to the student models. We further demonstrate that sensitive attributes can be inferred, even in the case where the adversary has limited auxiliary information. Finally, defensive strategies are discussed and evaluated. Our extensive study indicates that information leakage is a real privacy threat to the transfer learning framework widely used in real-life situations.

Download