Do you want to publish a course? Click here

Structure and magnetism of the skyrmion hosting family GaV$_4$S$_{8-y}$Se$_y$ with low levels of substitutions between $0 leq y leq 0.5$ and $7.5 leq yleq 8$

57   0   0.0 ( 0 )
 Added by Samuel Holt Mr
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Polycrystalline members of the GaV$_4$S$_{8-y}$Se$_y$ family of materials with small levels of substitution between $0 leq y leq 0.5$ and $7.5 leq yleq 8$ have been synthesized in order to investigate their magnetic and structural properties. Substitutions to the skyrmion hosting parent compounds GaV$_4$S$_8$ and GaV$_4$Se$_8$, are found to suppress the temperature of the cubic to rhombohedral structural phase transition that occurs in both end compounds and to create a temperature region around the transition where there is a coexistence of these two phases. Similarly, the magnitude of the magnetization and temperature of the magnetic transition are both suppressed in all substituted compounds until a glassy-like magnetic state is realized. There is evidence from the $ac$ susceptibility data that skyrmion lattices with similar dynamics to those in GaV$_4$S$_8$ and GaV$_4$Se$_8$ are present in compounds with very low levels of substitution, $0 < y< 0.2$ and $7.8 < y < 8$, however, these states vanish at higher levels of substitution. The magnetic properties of these substituted materials are affected by the substitution altering exchange pathways and resulting in the creation of increasingly disordered magnetic states.



rate research

Read More

We present an investigation of the influence of low-levels of chemical substitution on the magnetic ground state and N{ e}el skyrmion lattice (SkL) state in GaV$_4$S$_{8-y}$Se$_y$, where $y =0, 0.1, 7.9$, and $8$. Muon-spin spectroscopy ($mu$SR) measurements on $y=0$ and 0.1 materials reveal the magnetic ground state consists of microscopically coexisting incommensurate cycloidal and ferromagnetic environments, while chemical substitution leads to the growth of localized regions of increased spin density. $mu$SR measurements of emergent low-frequency skyrmion dynamics show that the SkL exists under low-levels of substitution at both ends of the series. Skyrmionic excitations persist to temperatures below the equilibrium SkL in substituted samples, suggesting the presence of skyrmion precursors over a wide range of temperatures.
Using HF+BCS method we study light nuclei with nuclear charge in the range $2 leq Z leq 8$ and lying near the neutron drip line. The HF method uses effective Skyrme forces and allows for axial deformations. We find that the neutron drip line forms stability peninsulas at $^{18}$He and $^{40}$C. These isotopes are found to be stable against one neutron emission and possess the highest known neutron to proton ratio in stable nuclei.
We report the successful synthesis of FeSe$_{1-x}$S$_{x}$ single crystals with $x$ ranging from 0 to 1 via a hydrothermal method. A complete phase diagram of FeSe$_{1-x}$S$_{x}$ has been obtained based on resistivity and magnetization measurements. The nematicity is suppressed with increasing $x$, and a small superconducting dome appears within the nematic phase. Outside the nematic phase, the superconductivity is continuously suppressed and reaches a minimum $T_c$ at $x$ = 0.45; beyond this point, $T_c$ slowly increases until $x$ = 1. Intriguingly, an anomalous resistivity upturn with a characteristic temperature $T^*$ in the intermediate region of $0.31 leq x leq 0.71$ is observed. $T^{*}$ shows a dome-like behavior with a maximum value at $x$ = 0.45, which is opposite the evolution of $T_c$, indicating competition between $T^*$ and superconductivity. The origin of $T^*$ is discussed in detail. Furthermore, the normal state resistivity evolves from non-Fermi-liquid to Fermi-liquid behavior with S doping at low temperatures, accompanied by a reduction in electronic correlations. Our study addresses the lack of single crystals in the high-S doping region and provides a complete phase diagram, which will promote the study of relations among nematicity, superconductivity, and magnetism.
We report on the emergence of robust superconducting order in single crystal alloys of 2H-TaSe$_{2-x}$S$_{x}$ (0$leq$x$leq$2) . The critical temperature of the alloy is surprisingly higher than that of the two end compounds TaSe$_{2}$ and TaS$_{2}$. The evolution of superconducting critical temperature T$_{c} (x)$ correlates with the full width at half maximum of the Bragg peaks and with the linear term of the high temperature resistivity. The conductivity of the crystals near the middle of the alloy series is higher or similar than that of either one of the end members 2H-TaSe$_{2}$ and/or 2H-TaS$_{2}$. It is known that in these materials superconductivity (SC) is in close competition with charge density wave (CDW) order. We interpret our experimental findings in a picture where disorder tilts this balance in favor of superconductivity by destroying the CDW order.
Remarkably, doping isovalent $d^{10}$ and $d^0$ cations onto the $B$ site in $A_2B$$B$O$_6$ double perovskites has the power to direct the magnetic interactions between magnetic $B$ cations. This is due to changes in orbital hybridization, which favors different superexchange pathways, and leads to the formation of alternative magnetic structures depending on whether $B$ is $d^{10}$ or $d^0$. Furthermore, the competition generated by introducing mixtures of $d^{10}$ and $d^0$ cations can drive the material into the realms of exotic quantum magnetism. Here, a W$^{6+}$ $d^0$ dopant was introduced to a $d^{10}$ hexagonal perovskite Ba$_2$CuTeO$_6$, which possesses a spin ladder geometry of Cu$^{2+}$ cations, creating a Ba$_2$CuTe$_{1-x}$W$_x$O$_6$ solid solution ($x$ = 0 - 0.3). Neutron and synchrotron X-ray diffraction show that W$^{6+}$ is almost exclusively substituted for Te$^{6+}$ on the corner-sharing site within the spin ladder, in preference to the face-sharing site between ladders. This means the intra-ladder interactions are selectively tuned by the $d^0$ cations. Bulk magnetic measurements suggest this suppresses magnetic ordering in a similar manner to that observed for the spin-liquid like material Sr$_2$CuTe$_{1-x}$W$_x$O$_6$. This further demonstrates the utility of $d^{10}$ and $d^0$ dopants as a tool for tuning magnetic ground states in a wide range of perovskites and perovskite-derived structures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا