No Arabic abstract
With rapid progress in artificial intelligence (AI), popularity of generative art has grown substantially. From creating paintings to generating novel art styles, AI based generative art has showcased a variety of applications. However, there has been little focus concerning the ethical impacts of AI based generative art. In this work, we investigate biases in the generative art AI pipeline right from those that can originate due to improper problem formulation to those related to algorithm design. Viewing from the lens of art history, we discuss the socio-cultural impacts of these biases. Leveraging causal models, we highlight how current methods fall short in modeling the process of art creation and thus contribute to various types of biases. We illustrate the same through case studies, in particular those related to style transfer. To the best of our knowledge, this is the first extensive analysis that investigates biases in the generative art AI pipeline from the perspective of art history. We hope our work sparks interdisciplinary discussions related to accountability of generative art.
There are two classes of generative art approaches: neural, where a deep model is trained to generate samples from a data distribution, and symbolic or algorithmic, where an artist designs the primary parameters and an autonomous system generates samples within these constraints. In this work, we propose a new hybrid genre: neuro-symbolic generative art. As a preliminary study, we train a generative deep neural network on samples from the symbolic approach. We demonstrate through human studies that subjects find the final artifacts and the creation process using our neuro-symbolic approach to be more creative than the symbolic approach 61% and 82% of the time respectively.
Art is the ultimate expression of human creativity that is deeply influenced by the philosophy and culture of the corresponding historical epoch. The quantitative analysis of art is therefore essential for better understanding human cultural evolution. Here we present a large-scale quantitative analysis of almost 140 thousand paintings, spanning nearly a millennium of art history. Based on the local spatial patterns in the images of these paintings, we estimate the permutation entropy and the statistical complexity of each painting. These measures map the degree of visual order of artworks into a scale of order-disorder and simplicity-complexity that locally reflects qualitative categories proposed by art historians. The dynamical behavior of these measures reveals a clear temporal evolution of art, marked by transitions that agree with the main historical periods of art. Our research shows that different artistic styles have a distinct average degree of entropy and complexity, thus allowing a hierarchical organization and clustering of styles according to these metrics. We have further verified that the identified groups correspond well with the textual content used to qualitatively describe the styles, and that the employed complexity-entropy measures can be used for an effective classification of artworks.
Whilst there are perhaps only a few scientific methods, there seem to be almost as many artistic methods as there are artists. Artistic processes appear to inhabit the highest order of open-endedness. To begin to understand some of the processes of art making it is helpful to try to automate them even partially. In this paper, a novel algorithm for producing generative art is described which allows a user to input a text string, and which in a creative response to this string, outputs an image which interprets that string. It does so by evolving images using a hierarchical neural Lindenmeyer system, and evaluating these images along the way using an image text dual encoder trained on billions of images and their associated text from the internet. In doing so we have access to and control over an instance of an artistic process, allowing analysis of which aspects of the artistic process become the task of the algorithm, and which elements remain the responsibility of the artist.
This paper proposes a way to understand neural network artworks as juxtapositions of natural image cues. It is hypothesized that images with unusual combinations of realistic visual cues are interesting, and, neural models trained to model natural images are well-suited to creating interesting images. Art using neural models produces new images similar to those of natural images, but with weird and intriguing variations. This analysis is applied to neural art based on Generative Adversarial Networks, image stylization, Deep Dreams, and Perception Engines.
In recent years, AI generated art has become very popular. From generating art works in the style of famous artists like Paul Cezanne and Claude Monet to simulating styles of art movements like Ukiyo-e, a variety of creative applications have been explored using AI. Looking from an art historical perspective, these applications raise some ethical questions. Can AI model artists styles without stereotyping them? Does AI do justice to the socio-cultural nuances of art movements? In this work, we take a first step towards analyzing these issues. Leveraging directed acyclic graphs to represent potential process of art creation, we propose a simple metric to quantify confounding bias due to the lack of modeling the influence of art movements in learning artists styles. As a case study, we consider the popular cycleGAN model and analyze confounding bias across various genres. The proposed metric is more effective than state-of-the-art outlier detection method in understanding the influence of art movements in artworks. We hope our work will elucidate important shortcomings of computationally modeling artists styles and trigger discussions related to accountability of AI generated art.