No Arabic abstract
In this study, we propose a wideband index modulation (IM) based on circularly-shifted chirps. To derive the proposed method, we first prove that a Golay complementary pair (GCP) can be constructed by linearly combining the Fourier series of chirps. We show that Fresnel integrals and/or Bessel functions, arising from sinusoidal and linear chirps, respectively, can lead to GCPs. We then exploit discrete Fourier transform-spread orthogonal frequency division multiplexing (DFT-s-OFDM) to obtain a low-complexity transmitter and receiver. We also discuss its generalization for achieving a trade-off between peak-to-mean envelope power ratio (PMEPR) and spectral efficiency (SE). Through comprehensive simulations, we compare the proposed scheme with DFT-s-OFDM with IM, orthogonal frequency division multiplexing (OFDM) with IM and complementary sequences (CSs) from Reed-Muller (RM) code. Our numerical results show that the proposed method limits the PMEPR while exploiting the frequency.
In this study, we analyze index modulation (IM) based on circularly-shifted chirps (CSCs) for dual-function radar & communication (DFRC) systems. We develop a maximum likelihood (ML) range estimator that considers multiple scatters. To improve the correlation properties of the transmitted waveform and estimation accuracy, we propose index separation (IS) which separates the CSCs apart in time. We theoretically show that the separation can be large under certain conditions without losing the spectral efficiency (SE). Our numerical results show that the IS combined ML and linear minimum mean square error (LMMSE)-based estimators can provide approximately 3 dB signal-to-noise ratio (SNR) gain in some cases while improving estimation accuracy substantially without causing any bit-error ratio (BER) degradation at the communication receiver.
Terahertz (THz) wireless communication is envisioned as a promising technology, which is capable of providing ultra-high-rate transmission up to Terabit per second. However, some hardware imperfections, which are generally neglected in the existing literature concerning lower data rates and traditional operating frequencies, cannot be overlooked in the THz systems. Hardware imperfections usually consist of phase noise, in-phase/quadrature imbalance, and nonlinearity of power amplifier. Due to the time-variant characteristic of phase noise, frequent pilot insertion is required, leading to decreased spectral efficiency. In this paper, to address this issue, a novel pilot design strategy is proposed based on index modulation (IM), where the positions of pilots are flexibly changed in the data frame, and additional information bits can be conveyed by indices of pilots. Furthermore, a turbo receiving algorithm is developed, which jointly performs the detection of pilot indices and channel estimation in an iterative manner. It is shown that the proposed turbo receiver works well even under the situation where the prior knowledge of channel state information is outdated. Analytical and simulation results validate that the proposed schemes achieve significant enhancement of bit-error rate performance and channel estimation accuracy, whilst attaining higher spectral efficiency in comparison with its classical counterpart.
Multidimensional Index Modulations (IM) are a novel alternative to conventional modulations which can bring considerable benefits for future wireless networks. Within this scope, in this paper we present a new scheme, named as Precoding-aided Transmitter side Generalized Space-Frequency Index Modulation (PT-GSFIM), where part of the information bits select the active antennas and subcarriers which then carry amplitude and phase modulated symbols. The proposed scheme is designed for multiuser multiple-input multiple-output (MU-MIMO) scenarios and incorporates a precoder which removes multiuser interference (MUI) at the receivers. Furthermore, the proposed PT-GSFIM also integrates signal space diversity (SSD) techniques for tackling the typical poor performance of uncoded orthogonal frequency division multiplexing (OFDM) based schemes. By combining complex rotation matrices (CRM) and subcarrier-level interleaving, PT-GSFIM can exploit the inherent diversity in frequency selective channels and improve the performance without additional power or bandwidth. To support reliable detection of the multidimensional PT-GSFIM we also propose three different detection algorithms which can provide different tradeoffs between performance and complexity. Simulation results shows that proposed PT-GSFIM scheme, can provide significant gains over conventional MU-MIMO and GSM schemes.
Dual function radar communications (DFRC) systems are attractive technologies for autonomous vehicles, which utilize electromagnetic waves to constantly sense the environment while simultaneously communicating with neighbouring devices. An emerging approach to implement DFRC systems is to embed information in radar waveforms via index modulation (IM). Implementation of DFRC schemes in vehicular systems gives rise to strict constraints in terms of cost, power efficiency, and hardware complexity. In this paper, we extend IM-based DFRC systems to utilize sparse arrays and frequency modulated continuous waveforms (FMCWs), which are popular in automotive radar for their simplicity and low hardware complexity. The proposed FMCW-based radar-communications system (FRaC) operates at reduced cost and complexity by transmitting with a reduced number of radio frequency modules, combined with narrowband FMCW signalling. This is achieved via array sparsification in transmission, formulating a virtual multiple-input multiple-output array by combining the signals in one coherent processing interval, in which the narrowband waveforms are transmitted in a randomized manner. Performance analysis and numerical results show that the proposed radar scheme achieves similar resolution performance compared with a wideband radar system operating with a large receive aperture, while requiring less hardware overhead. For the communications subsystem, FRaC achieves higher rates and improved error rates compared to dual-function signalling based on conventional phase modulation.
In this paper, a novel variation of codeword position index based sparse code multiple access (CPI-SCMA) system, which is termed as hybrid codeword position index modulated sparse code multiple access (HCPI-SCMA), is proposed to further improve the transmission efficiency (TE). In this scheme, unlike the conventional CPI-SCMA that uses only one kind of bits-toindices (BTI) mapper, the codeword positions which are padded with zeros in CPI-SCMA are also utilized to transmit additional information. Since multiple index selectors are used in a HCPISCMA codeword, the original message passing algorithm (MPA) no longer works in HCPI-SCMA; hence, a modified MPA is proposed to detect the received signals. It is shown in the simulations and analysis that the proposed scheme can achieve both higher TE and better error rate performance in the region of high signal-to-noise ratio (SNR) compare to the conventional SCMA (C-SCMA). Moreover, compared with CPI-SCMA, HCPISCMA can achieve higher TE with approximately the same error rate performance compared to CPI-SCMA at high SNRs.