Multifunctional Oxides for Topological Magnetic Textures by Design


Abstract in English

Several challenges in designing an operational Skyrmion racetrack memory are well-known. Among those challenges, a few contradictions can be identified if researchers were to rely only on metallic materials. Hence, expanding the exploration on Skyrmion Physics into oxide materials is essential to bridge the contradicting gap. In this topical review, we first briefly revise the theories and criteria involved in stabilizing and manipulating Skymions, followed by studying the behaviors of dipolar-stabilized magnetic bubbles. Next, we explore the properties of multiferroic Skyrmions with magnetoelectric coupling, which can only be stabilized in Cu$_2$OSeO$_3$ thus far, as well as the rare bulk Neel-type Skyrmions in some polar materials. As an interlude section, we review the theory of Anomalous (AHE) and Topological Hall Effect (THE), before going through the recent progress of THE in oxide thin films. The debate about an alternative interpretation is also discussed. Finally, this review ends with future outlooks about the promising strategies of using interfacial charge-transfer and (111)-orientation of perovskites to benefit the field of Skyrmion research.

Download