Do you want to publish a course? Click here

Reissner-Nordstrom perturbation framework with gravitational wave applications

98   0   0.0 ( 0 )
 Added by Thomas Osburn
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a new convenient framework for modeling Reissner-Nordstrom black hole perturbations from charged distributions of matter. Using this framework, we quantify how gravitational wave observations of compact binary systems would be affected if one or both components were charged. Our approach streamlines the (linearized) Einstein-Maxwell equations through convenient master functions that we designed to ameliorate certain disadvantages of prior strategies. By solving our improved master equations with a point source, we are able to quantify the rate of orbital energy dissipation via electromagnetic and gravitational radiation. Through adiabatic and quasicircular approximations, we apply our dissipative calculations to determine trajectories for intermediate and extreme mass-ratio inspirals. By comparing trajectories and waveforms with varied charges to those with neutral components, we explore the potential effect of electric charge on gravitational wave signals. We observe that the case of opposite charge-to-mass ratios has the most dramatic impact. Our findings are largely interpreted through the lens of the upcoming LISA mission.



rate research

Read More

We study black holes produced by the collapse of a spherically symmetric charged scalar field in asymptotically flat space. We employ a late time expansion and show decaying fluxes of radiation through the event horizon imply the black hole must contain a null singularity on the Cauchy horizon and a central spacelike singularity.
We study the modified Reissner Nordstrom metric in the unimodular gravity. So far the spherical symmetric Einstein field equation in unimodular gravity has been studied in the absence of any source. We consider static electric and magnetic charge as source. We solve for Maxwell equations in unimodular gravitational background. We show that in unimodular gravity the electromagnetic field strength tensor is modified. We also show that the solution in unimodular gravity differs from the usual R-N metric in Einstein gravity with some corrections. We further study the thermodynamical properties of the R-N black-hole solution in this theory.
We start from a static, spherically symmetric space-time in the presence of an electrostatic field and construct the mini-superspace Lagrangian that reproduces the well known Reissner - Nordstrom solution. We identify the classical integrals of motion that are to be mapped to quantum observables and which are associated with the mass and charge. Their eigenvalue equations are used as supplementary conditions to the Wheeler-DeWitt equation and a link is provided between the existence of an horizon and to whether the spectrum of the observables is fully discrete or not. For each case we provide an orthonormal basis of states as emerges through the process of canonical quantization.
In the present article we study the Inverse Electrodynamics Model. This model is a gauge and parity invariant non-linear Electrodynamics theory, which respects the conformal invariance of standard Electrodynamics. This modified Electrodynamics model, when minimally coupled to General Relativity, is compatible with static and spherically symmetric Reissner-Nordstrom-like black-hole solutions. However, these black-hole solutions present more complex thermodynamic properties than their Reissner-Nordstrom black-hole solutions counterparts in standard Electrodynamics. In particular, in the Inverse Model a new stability region, with both the heat capacity and the free energy negative, arises. Moreover, unlike the scenario in standard Electrodynamics, a sole transition phase is possible for a suitable choice in the set of parameters of these solutions.
Studying particle motion in the gravitational field of a black hole from the perspective of different observers is important for separating the coordinate artifacts from the physical phenomena. In this paper, we show that a freely falling test particle exhibits gravitational repulsion by a black hole as seen by an asymptotic observer, whereas nothing of the kind happens as recorded by a freely falling observer or by an observer located at a finite distance from the event horizon. This analysis is carried out for a general Reissner-Nordstrom, an extremal Reissner-Nordstrom, and a Schwarzschild black hole. We are lead to conclude that the origin of these bizarre results lies in the fact that the quantities measured by the different observers are neither Lorentz scalars nor gauge invariant.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا