Do you want to publish a course? Click here

Unsupervised Vision-and-Language Pre-training Without Parallel Images and Captions

135   0   0.0 ( 0 )
 Added by Liunian Harold Li
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Pre-trained contextual vision-and-language (V&L) models have achieved impressive performance on various benchmarks. However, existing models require a large amount of parallel image-caption data for pre-training. Such data are costly to collect and require cumbersome curation. Inspired by unsupervised machine translation, we investigate if a strong V&L representation model can be learned through unsupervised pre-training without image-caption corpora. In particular, we propose to conduct ``mask-and-predict pre-training on text-only and image-only corpora and introduce the object tags detected by an object recognition model as anchor points to bridge two modalities. We find that such a simple approach achieves performance close to a model pre-trained with aligned data, on four English V&L benchmarks. Our work challenges the widely held notion that aligned data is necessary for V&L pre-training, while significantly reducing the amount of supervision needed for V&L models.



rate research

Read More

While recent research on natural language inference has considerably benefited from large annotated datasets, the amount of inference-related knowledge (including commonsense) provided in the annotated data is still rather limited. There have been two lines of approaches that can be used to further address the limitation: (1) unsupervised pretraining can leverage knowledge in much larger unstructured text data; (2) structured (often human-curated) knowledge has started to be considered in neural-network-based models for NLI. An immediate question is whether these two approaches complement each other, or how to develop models that can bring together their advantages. In this paper, we propose models that leverage structured knowledge in different components of pre-trained models. Our results show that the proposed models perform better than previous BERT-based state-of-the-art models. Although our models are proposed for NLI, they can be easily extended to other sentence or sentence-pair classification problems.
While large scale pre-training has achieved great achievements in bridging the gap between vision and language, it still faces several challenges. First, the cost for pre-training is expensive. Second, there is no efficient way to handle the data noise which degrades model performance. Third, previous methods only leverage limited image-text paired data, while ignoring richer single-modal data, which may result in poor generalization to single-modal downstream tasks. In this work, we propose an EfficientCLIP method via Ensemble Confident Learning to obtain a less noisy data subset. Extra rich non-paired single-modal text data is used for boosting the generalization of text branch. We achieve the state-of-the-art performance on Chinese cross-modal retrieval tasks with only 1/10 training resources compared to CLIP and WenLan, while showing excellent generalization to single-modal tasks, including text retrieval and text classification.
Masked language modeling (MLM) is one of the key sub-tasks in vision-language pretraining. In the cross-modal setting, tokens in the sentence are masked at random, and the model predicts the masked tokens given the image and the text. In this paper, we observe several key disadvantages of MLM in this setting. First, as captions tend to be short, in a third of the sentences no token is sampled. Second, the majority of masked tokens are stop-words and punctuation, leading to under-utilization of the image. We investigate a range of alternative masking strategies specific to the cross-modal setting that address these shortcomings, aiming for better fusion of text and image in the learned representation. When pre-training the LXMERT model, our alternative masking strategies consistently improve over the original masking strategy on three downstream tasks, especially in low resource settings. Further, our pre-training approach substantially outperforms the baseline model on a prompt-based probing task designed to elicit image objects. These results and our analysis indicate that our method allows for better utilization of the training data.
Vision-language pre-training (VLP) on large-scale image-text pairs has recently witnessed rapid progress for learning cross-modal representations. Existing pre-training methods either directly concatenate image representation and text representation at a feature level as input to a single-stream Transformer, or use a two-stream cross-modal Transformer to align the image-text representation at a high-level semantic space. In real-world image-text data, we observe that it is easy for some of the image-text pairs to align simple semantics on both modalities, while others may be related after higher-level abstraction. Therefore, in this paper, we propose a new pre-training method SemVLP, which jointly aligns both the low-level and high-level semantics between image and text representations. The model is pre-trained iteratively with two prevalent fashions: single-stream pre-training to align at a fine-grained feature level and two-stream pre-training to align high-level semantics, by employing a shared Transformer network with a pluggable cross-modal attention module. An extensive set of experiments have been conducted on four well-established vision-language understanding tasks to demonstrate the effectiveness of the proposed SemVLP in aligning cross-modal representations towards different semantic granularities.
Image2Speech is the relatively new task of generating a spoken description of an image. This paper presents an investigation into the evaluation of this task. For this, first an Image2Speech system was implemented which generates image captions consisting of phoneme sequences. This system outperformed the original Image2Speech system on the Flickr8k corpus. Subsequently, these phoneme captions were converted into sentences of words. The captions were rated by human evaluators for their goodness of describing the image. Finally, several objective metric scores of the results were correlated with these human ratings. Although BLEU4 does not perfectly correlate with human ratings, it obtained the highest correlation among the investigated metrics, and is the best currently existing metric for the Image2Speech task. Current metrics are limited by the fact that they assume their input to be words. A more appropriate metric for the Image2Speech task should assume its input to be parts of words, i.e. phonemes, instead.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا