Do you want to publish a course? Click here

DeFuzz: Deep Learning Guided Directed Fuzzing

390   0   0.0 ( 0 )
 Added by Xiaogang Zhu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Fuzzing is one of the most effective technique to identify potential software vulnerabilities. Most of the fuzzers aim to improve the code coverage, and there is lack of directedness (e.g., fuzz the specified path in a software). In this paper, we proposed a deep learning (DL) guided directed fuzzing for software vulnerability detection, named DeFuzz. DeFuzz includes two main schemes: (1) we employ a pre-trained DL prediction model to identify the potentially vulnerable functions and the locations (i.e., vulnerable addresses). Precisely, we employ Bidirectional-LSTM (BiLSTM) to identify attention words, and the vulnerabilities are associated with these attention words in functions. (2) then we employ directly fuzzing to fuzz the potential vulnerabilities by generating inputs that tend to arrive the predicted locations. To evaluate the effectiveness and practical of the proposed DeFuzz technique, we have conducted experiments on real-world data sets. Experimental results show that our DeFuzz can discover coverage more and faster than AFL. Moreover, DeFuzz exposes 43 more bugs than AFL on real-world applications.



rate research

Read More

560 - Pengfei Wang , Xu Zhou , Kai Lu 2020
Most greybox fuzzing tools are coverage-guided as code coverage is strongly correlated with bug coverage. However, since most covered codes may not contain bugs, blindly extending code coverage is less efficient, especially for corner cases. Unlike coverage-guided greybox fuzzers who extend code coverage in an undirected manner, a directed greybox fuzzer spends most of its time allocation on reaching specific targets (e.g., the bug-prone zone) without wasting resources stressing unrelated parts. Thus, directed greybox fuzzing (DGF) is particularly suitable for scenarios such as patch testing, bug reproduction, and specialist bug hunting. This paper studies DGF from a broader view, which takes into account not only the location-directed type that targets specific code parts, but also the behaviour-directed type that aims to expose abnormal program behaviours. Herein, the first in-depth study of DGF is made based on the investigation of 32 state-of-the-art fuzzers (78% were published after 2019) that are closely related to DGF. A thorough assessment of the collected tools is conducted so as to systemise recent progress in this field. Finally, it summarises the challenges and provides perspectives for future research.
85 - Qingtian Zou 2020
Network attacks have become a major security concern for organizations worldwide and have also drawn attention in the academics. Recently, researchers have applied neural networks to detect network attacks with network logs. However, public network data sets have major drawbacks such as limited data sample variations and unbalanced data with respect to malicious and benign samples. In this paper, we present a new approach, protocol fuzzing, to automatically generate high-quality network data, on which deep learning models can be trained. Our findings show that fuzzing generates data samples that cover real-world data and deep learning models trained with fuzzed data can successfully detect real network attacks.
Intuitively, a backdoor attack against Deep Neural Networks (DNNs) is to inject hidden malicious behaviors into DNNs such that the backdoor model behaves legitimately for benign inputs, yet invokes a predefined malicious behavior when its input contains a malicious trigger. The trigger can take a plethora of forms, including a special object present in the image (e.g., a yellow pad), a shape filled with custom textures (e.g., logos with particular colors) or even image-wide stylizations with special filters (e.g., images altered by Nashville or Gotham filters). These filters can be applied to the original image by replacing or perturbing a set of image pixels.
Coverage-based greybox fuzzing (CGF) is one of the most successful methods for automated vulnerability detection. Given a seed file (as a sequence of bits), CGF randomly flips, deletes or bits to generate new files. CGF iteratively constructs (and fuzzes) a seed corpus by retaining those generated files which enhance coverage. However, random bitflips are unlikely to produce valid files (or valid chunks in files), for applications processing complex file formats. In this work, we introduce smart greybox fuzzing (SGF) which leverages a high-level structural representation of the seed file to generate new files. We define innovative mutation operators that work on the virtual file structure rather than on the bit level which allows SGF to explore completely new input domains while maintaining file validity. We introduce a novel validity-based power schedule that enables SGF to spend more time generating files that are more likely to pass the parsing stage of the program, which can expose vulnerabilities much deeper in the processing logic. Our evaluation demonstrates the effectiveness of SGF. On several libraries that parse structurally complex files, our tool AFLSmart explores substantially more paths (up to 200%) and exposes more vulnerabilities than baseline AFL. Our tool AFLSmart has discovered 42 zero-day vulnerabilities in widely-used, well-tested tools and libraries; so far 17 CVEs were assigned.
Self-driving cars and trucks, autonomous vehicles (AVs), should not be accepted by regulatory bodies and the public until they have much higher confidence in their safety and reliability -- which can most practically and convincingly be achieved by testing. But existing testing methods are inadequate for checking the end-to-end behaviors of AV controllers against complex, real-world corner cases involving interactions with multiple independent agents such as pedestrians and human-driven vehicles. While test-driving AVs on streets and highways fails to capture many rare events, existing simulation-based testing methods mainly focus on simple scenarios and do not scale well for complex driving situations that require sophisticated awareness of the surroundings. To address these limitations, we propose a new fuzz testing technique, called AutoFuzz, which can leverage widely-used AV simulators API grammars. to generate semantically and temporally valid complex driving scenarios (sequences of scenes). AutoFuzz is guided by a constrained Neural Network (NN) evolutionary search over the API grammar to generate scenarios seeking to find unique traffic violations. Evaluation of our prototype on one state-of-the-art learning-based controller and two rule-based controllers shows that AutoFuzz efficiently finds hundreds of realistic traffic violations resembling real-world crashes. Further, fine-tuning the learning-based controller with the traffic violations found by AutoFuzz successfully reduced the traffic violations found in the new version of the AV controller software.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا