Do you want to publish a course? Click here

Toppleable Permutations, Excedances and Acyclic Orientations

124   0   0.0 ( 0 )
 Added by Arvind Ayyer
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Recall that an excedance of a permutation $pi$ is any position $i$ such that $pi_i > i$. Inspired by the work of Hopkins, McConville and Propp (Elec. J. Comb., 2017) on sorting using toppling, we say that a permutation is toppleable if it gets sorted by a certain sequence of toppling moves. One of our main results is that the number of toppleable permutations on $n$ letters is the same as those for which excedances happen exactly at ${1,dots, lfloor (n-1)/2 rfloor}$. Additionally, we show that the above is also the number of acyclic orientations with unique sink (AUSOs) of the complete bipartite graph $K_{lceil n/2 rceil, lfloor n/2 rfloor + 1}$. We also give a formula for the number of AUSOs of complete multipartite graphs. We conclude with observations on an extremal question of Cameron et al. concerning maximizers of (the number of) acyclic orientations, given a prescribed number of vertices and edges for the graph.



rate research

Read More

130 - Heesung Shin , Jiang Zeng 2014
We consider several generalizations of the classical $gamma$-positivity of Eulerian polynomials (and their derangement analogues) using generating functions and combinatorial theory of continued fractions. For the symmetric group, we prove an expansion formula for
229 - Michael Lugo 2009
This paper develops an analogy between the cycle structure of, on the one hand, random permutations with cycle lengths restricted to lie in an infinite set $S$ with asymptotic density $sigma$ and, on the other hand, permutations selected according to the Ewens distribution with parameter $sigma$. In particular we show that the asymptotic expected number of cycles of random permutations of $[n]$ with all cycles even, with all cycles odd, and chosen from the Ewens distribution with parameter 1/2 are all ${1 over 2} log n + O(1)$, and the variance is of the same order. Furthermore, we show that in permutations of $[n]$ chosen from the Ewens distribution with parameter $sigma$, the probability of a random element being in a cycle longer than $gamma n$ approaches $(1-gamma)^sigma$ for large $n$. The same limit law holds for permutations with cycles carrying multiplicative weights with average $sigma$. We draw parallels between the Ewens distribution and the asymptotic-density case and explain why these parallels should exist using permutations drawn from weighted Boltzmann distributions.
In this note we investigate correlation inequalities for `up-sets of permutations, in the spirit of the Harris--Kleitman inequality. We focus on two well-studied partial orders on $S_n$, giving rise to differing notions of up-sets. Our first result shows that, under the strong Bruhat order on $S_n$, up-sets are positively correlated (in the Harris--Kleitman sense). Thus, for example, for a (uniformly) random permutation $pi$, the event that no point is displaced by more than a fixed distance $d$ and the event that $pi$ is the product of at most $k$ adjacent transpositions are positively correlated. In contrast, under the weak Bruhat order we show that this completely fails: surprisingly, there are two up-sets each of measure $1/2$ whose intersection has arbitrarily small measure. We also prove analogous correlation results for a class of non-uniform measures, which includes the Mallows measures. Some applications and open problems are discussed.
We introduce a new boundedness condition for affine permutations, motivated by the fruitful concept of periodic boundary conditions in statistical physics. We study pattern avoidance in bounded affine permutations. In particular, we show that if $tau$ is one of the finite increasing oscillations, then every $tau$-avoiding affine permutation satisfies the boundedness condition. We also explore the enumeration of pattern-avoiding affine permutations that can be decomposed into blocks, using analytic methods to relate their exact and asymptotic enumeration to that of the underlying ordinary permutations. Finally, we perform exact and asymptotic enumeration of the set of all bounded affine permutations of size $n$. A companion paper will focus on avoidance of monotone decreasing patterns in bounded affine permutations.
174 - Shu-Chiuan Chang 2010
We study the number of acyclic orientations on the generalized two-dimensional Sierpinski gasket $SG_{2,b}(n)$ at stage $n$ with $b$ equal to two and three, and determine the asymptotic behaviors. We also derive upper bounds for the asymptotic growth constants for $SG_{2,b}$ and $d$-dimensional Sierpinski gasket $SG_d$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا