Do you want to publish a course? Click here

Kilonovae across the nuclear physics landscape: The impact of nuclear physics uncertainties on r-process-powered emission

86   0   0.0 ( 0 )
 Added by Jennifer Barnes
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Merging neutron stars produce kilonovae---electromagnetic transients powered by the decay of unstable nuclei synthesized via rapid neutron capture (the r-process) in material that is gravitationally unbound during inspiral and coalescence. Kilonova emission, if accurately interpreted, can be used to characterize the masses and compositions of merger-driven outflows, helping to resolve a long-standing debate about the origins of r-process material in the Universe. We explore how the uncertain properties of nuclei involved in the r-process complicate the inference of outflow properties from kilonova observations. Using r-process simulations, we show how nuclear physics uncertainties impact predictions of radioactive heating and element synthesis. For a set of models that span a large range in both predicted heating and final abundances, we carry out detailed numerical calculations of decay product thermalization and radiation transport in a kilonova ejecta with a fixed mass and density profile. The light curves associated with our models exhibit great diversity in their luminosities, with peak brightness varying by more than an order of magnitude. We also find variability in the shape of the kilonova light curves and their color, which in some cases runs counter to the expectation that increasing levels of lanthanide and/or actinide enrichment will be correlated with longer, dimmer, redder emission.



rate research

Read More

62 - Z. Y. Wang , Q. G. Wen , 2019
Based on a simple site-independent approach, we attempt to reproduce the solar $r$-process abundance with four nuclear mass models, and investigate the impact of the nuclear mass uncertainties on the $r$ process. In this paper, we first analyze the reliability of an adopted empirical formula for $beta$-decay half-lives which is a key ingredient for the $r$ process. Then we apply four different mass tables to study the $r$-process nucleosynthesis together with the calculated $beta$-decay half-lives, and the existing $beta$-decay data from FRDM+QRPA is also considered for comparison. The numerical results show that the main features of the solar $r$-process pattern and the locations of the abundance peaks can be reproduced well via the $r$-process simulations. Moreover, we also find that the mass uncertainties can significantly affect the derived astrophysical conditions for the $r$-process site, and resulting in a remarkable impact on the $r$ process.
Modeling the evolution of the elements in the Milky Way is a multidisciplinary and challenging task. In addition to simulating the 13 billion years evolution of our Galaxy, chemical evolution simulations must keep track of the elements synthesized and ejected from every astrophysical site of interest (e.g., supernova, compact binary merger). The elemental abundances of such ejecta, which are a fundamental input for chemical evolution codes, are usually taken from theoretical nucleosynthesis calculations performed by the nuclear astrophysics community. Therefore, almost all chemical evolution predictions rely on the nuclear physics behind those calculations. In this proceedings, we highlight the impact of nuclear physics uncertainties on galactic chemical evolution predictions. We demonstrate that nuclear physics and galactic evolution uncertainties both have a significant impact on interpreting the origin of neutron-capture elements in our Solar System. Those results serve as a motivation to create and maintain collaborations between the fields of nuclear astrophysics and galaxy evolution.
The s-process, a production mechanism based on slow-neutron capture during stellar evolution, is the origin of about half the elements heavier than iron. Abundance predictions for s-process nucleosynthesis depend strongly on the relevant neutron-capture and $beta$-decay rates, as well as on the details of the stellar model being considered. Here, we have used a Monte-Carlo approach to evaluate the nuclear uncertainty in s-process nucleosynthesis. We considered the helium burning of massive stars for the weak s-process and low-mass asymptotic-giant-branch stars for the main s-process. Our calculations include a realistic and general prescription for the temperature dependent uncertainty for the reaction cross sections. We find that the adopted uncertainty for (${rm n},gamma$) rates, tens of per cent on average, effects the production of s-process nuclei along the line of $beta$-stability, and that the uncertainties in $beta$-decay from excited state contributions, has the strongest impact on branching points.
The r-process constitutes one of the major challenges in nuclear astrophysics. Its astrophysical site has not yet been identified but there is observational evidence suggesting that at least two possible sites should contribute to the solar system abundance of r-process elements and that the r-process responsible for the production of elements heavier than Z=56 operates quite robustly producing always the same relative abundances. From the nuclear-physics point of view the r-process requires the knowledge of a large number of reaction rates involving exotic nuclei. These include neutron capture rates, beta-decays and fission rates, the latter for the heavier nuclei produced in the r-process. We have developed for the first time a complete database of reaction rates that in addition to neutron-capture rates and beta-decay half-lives includes all possible reactions that can induce fission (neutron-capture, beta-decay and spontaneous fission) and the corresponding fission yields. In addition, we have implemented these reaction rates in a fully implicit reaction network. We have performed r-process calculations for the neutrino-driven wind scenario to explore whether or not fission can contribute to provide a robust r-process pattern.
We investigated the impact of uncertainties in neutron-capture and weak reactions (on heavy elements) on the s-process nucleosynthesis in low-mass stars using a Monte-Carlo based approach. We performed extensive nuclear reaction network calculations that include newly evaluated temperature-dependent upper and lower limits for the individual reaction rates. Our sophisticated approach is able to evaluate the reactions that impact more significantly the final abundances. We found that beta-decay rate uncertainties affect typically nuclides near s-process branchings, whereas most of the uncertainty in the final abundances is caused by uncertainties in neutron capture rates, either directly producing or destroying the nuclide of interest. Combined total nuclear uncertainties due to reactions on heavy elements are approximately 50%.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا