Do you want to publish a course? Click here

A Frustrated Bimeronium: Static Structure and Dynamics

72   0   0.0 ( 0 )
 Added by Xichao Zhang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show a topological spin texture called bimeronium in magnets with in-plane magnetization. It is a topological counterpart of skyrmionium in perpendicularly magnetized magnets and can be seen as a combination of two bimerons with opposite topological charges. We report the static structure and spin-orbit-torque-induced dynamics of an isolated bimeronium in a magnetic monolayer with frustrated exchange interactions. We study the anisotropy and magnetic field dependences of a static bimeronium. We also explore the bimeronium dynamics driven by the damping-like spin-orbit torque. We find that the bimeronium shows steady rotation when the spin polarization direction is parallel to the easy axis. Moreover, we demonstrate the annihilation of the bimeronium when the spin polarization direction is perpendicular to the easy axis. Our results are useful for understanding fundamental properties of bimeronium structures and may offer an approach to build bimeronium-based spintronic devices.



rate research

Read More

Magnetic bimeron is a topological counterpart of skyrmions in in-plane magnets, which can be used as a spintronic information carrier. We report the static properties of bimerons with different topological structures in a frustrated ferromagnetic monolayer, where the bimeron structure is characterized by the vorticity $Q_{text{v}}$ and helicity $eta$. It is found that the bimeron energy increases with $Q_{text{v}}$, and the energy of an isolated bimeron with $Q_{text{v}}=pm 1$ depends on $eta$. We also report the dynamics of frustrated bimerons driven by the spin-orbit torques, which depend on the strength of the dampinglike and fieldlike torques. We find that the isolated bimeron with $Q_{text{v}}=pm 1$ can be driven into linear or elliptical motion when the spin polarization is perpendicular to the easy axis. We numerically reveal the damping dependence of the bimeron Hall angle driven by the dampinglike torque. Besides, the isolated bimeron with $Q_{text{v}}=pm 1$ can be driven into rotation by the dampinglike torque when the spin polarization is parallel to the easy axis. The rotation frequency is proportional to the driving current density. In addition, we numerically demonstrate the possibility of creating a bimeron state with a higher or lower topological charge by the current-driven collision and merging of bimeron states with different $Q_{text{v}}$. Our results could be useful for understanding the bimeron physics in frustrated magnets.
We study the emergence of magnetism and its interplay with structural properties in a two dimensional molecular crystal of cyclacenes, using density functional theory (DFT). Isolated cyclacenes with an even number of fused benzenes host two unpaired electrons in two topological protected zero modes, at the top and bottom carbon rings that form the molecule. We show that, in the gas phase, electron repulsion promotes an open-shell singlet with strong intramolecular antiferromagnetic exchange. We consider a closed packing triangular lattice crystal phase and we find a strong dependence of the band structure and magnetic interactions on the rotation angle of the cyclacenes with respect to the crystal lattice vectors. The orientational ground state maximizes the intermolecular hybridization, yet local moments survive. Intermolecular exchange is computed to be antiferromagnetic, and DFT predicts a broken symmetry $120^circ$ spin phase reflecting the frustration of the intermolecular spin coupling. Thus, the cyclacene crystal realizes a bilayer of two antiferromagnetically coupled S = 1/2 triangular lattices. Our results provide a bottom-up route towards carbon based strongly correlated platforms in two dimensions.
Magnetic skyrmions are particle-like topological excitations that recently generated much interest as candidates for future spintronic devices based on skyrmion small size, enhanced topological stability, and/or mutual interaction. Here we examine the properties of isolated skyrmions in a frustrated chiral magnet with competing Dzyaloshinskii-Moriya and frustrated exchange interactions. We show that the skyrmion size drastically decreases even for small values of competing stabilization mechanisms. Skyrmion mutual interaction remains attracting as is inherent for frustrated skyrmions, but the value of the Dzyaloshinskii constant regulates the number of minima in the interaction potentials. Moreover, the constructed phase diagrams for a chiral helimagnet contain a distorted spiral state that can be considered as a buffer between the helicoidal and conical one-dimensional modulations. The formulated concepts may further enhance the functionalities of spintronic devices. In particular, the controlled instability of skyrmions with respect to the conical state allows to obtain bimeron-like structures. Moreover, our results provide physical insight into the chiral states in the magnetic systems, e.g., in MnSi$_{1-x}$Ge$_x$.
Magnetic skyrmionium can be used as a nanometer-scale non-volatile information carrier, which shows no skyrmion Hall effect due to its special structure carrying zero topological charge. Here, we report the static and dynamic properties of an isolated nanoscale skyrmionium in a frustrated magnetic monolayer, where the skyrmionium is stabilized by competing interactions. The frustrated skyrmionium has a size of about $10$ nm, which can be further reduced by tuning perpendicular magnetic anisotropy or magnetic field. It is found that the nanoscale skyrmionium driven by the damping-like spin-orbit torque shows directional motion with a favored Bloch-type helicity. A small driving current or magnetic field can lead to the transformation of an unstable Neel-type skyrmionium to a metastable Bloch-type skyrmionium. A large driving current may result in the distortion and collapse of the Bloch-type skyrmionium. Our results are useful for the understanding of frustrated skyrmionium physics, which also provide guidelines for the design of spintronic devices based on topological spin textures.
Frustrated topological spin textures have unique properties that may enable novel spintronic applications, such as the helicity-based information storage. Here we report the statics and current-induced dynamics of two-dimensional (2D) pancake skyrmions in a stack of weakly coupled frustrated magnetic monolayers, which form a three-dimensional (3D) skyrmion string. The Bloch-type skyrmion string is energetically more stable than its Neel-type counterpart. It can be driven into translational motion by the dampinglike spin-orbit torque and shows the damping-dependent skyrmion Hall effect. Most notably, the skyrmion string can be transformed to a dynamically stable bimeron string by the dampinglike spin-orbit torque. The current-induced bimeron string rotates stably with respect to its center, which can spontaneously transform back to a skyrmion string when the current is switched off. Our results reveal unusual physical properties of 3D frustrated spin textures, and may open up new possibilities for spintronic applications based on skyrmion and bimeron strings.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا