Do you want to publish a course? Click here

Domain Wall Constraints on Two Higgs Doublet Models with $Z_2$ Symmetry

72   0   0.0 ( 0 )
 Added by Dominic Viatic
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Two Higgs Doublet Model (2HDM) with spontaneously broken $Z_2$ symmetry predicts a production of domain walls at the electroweak scale. We derive cosmological constraints on model parameters for both Type-I and Type-II 2HDMs from the requirement that domain walls do not dominate the Universe by the present day. For Type-I 2HDMs, we deduce the lower bound on the key parameter $tanbeta > 10^5$ for a wide range of Higgs-boson masses $sim$ 100 GeV or greater close to the Standard Model alignment limit. In addition, we perform numerical simulations of the 2HDM with an approximate as well as an exact $Z_2$ symmetry but biased initial conditions. In both cases, we find that domain wall networks are unstable and, hence, do not survive at late times. The domain walls experience an exponential suppression of scaling in these models which can help ameliorate the stringent constraints found in the case of an exact discrete symmetry. For a 2HDM with softly-broken $Z_2$ symmetry, we relate the size of this exponential suppression to the soft-breaking bilinear parameter $m_{12}$ allowing limits to be placed on this parameter of order $mu$eV, such that domain wall domination can be avoided. In particular, for Type-II 2HDMs, we obtain a corresponding lower limit on the CP-odd phase $theta$ generated by QCD instantons, $theta stackrel{>}{{}_sim} 10^{-11}/(sinbeta cosbeta)$, which is in some tension with the upper limit of $theta stackrel{<}{{}_sim} 10^{-11}$--$10^{-10}$, as derived from the non-observation of a non-zero neutron electric dipole moment. For a $Z_2$-symmetric 2HDM with biased initial conditions, we are able to relate the size of the exponential suppression to a biasing parameter $varepsilon$ so as to avoid domain wall domination.



rate research

Read More

The Two Higgs Doublet Model predicts the emergence of 3 distinct domain wall solutions arising from the breaking of 3 accidental global symmetries, $Z_2$, CP1 and CP2, at the electroweak scale for specific choices of the model parameters. We present numerical kink solutions to the field equations in all three cases along with dynamical simulations of the models in (2+1) and (3+1) dimensions. For each kink solution we define an associated topological current. In all three cases simulations produce a network of domain walls which deviates from power law scaling in Minkowski and FRW simulations. This deviation is attributed to a winding of the electroweak group parameters around the domain walls in our simulations. We observe a local violation of the neutral vacuum condition on the domain walls in our simulations. This violation is attributed to relative electroweak transformations across the domain walls which is a general feature emerging from random initial conditions.
We show that there is a constraint on the parameter space of two Higgs doublet models that comes from the existence of the stable vortex-domain wall systems. The constraint is quite universal in the sense that it depends on only two combinations of Lagrangian parameters and does not depend on how fermions couple to two Higgs fields. Numerical solutions of field configurations of domain wall-vortex system are obtained, which provide a basis for further quantitative study of cosmology which involve such topological objects.
We give a comprehensive study from flavor observables of pion, kaon, D_(s), and B_(s) mesons for limiting the Two Higgs Doublet Models (2HDMs) with natural flavor conservation, namely, Z_2 symmetric and aligned type of models. With use of the updated studies and analyses of B -> tau nu, D -> mu nu, D_s -> tau nu, D_s -> mu nu, K -> mu nu, Pi -> mu nu, B^0_s -> mu^+ mu^-, B^0_d -> mu^+ mu^-, tau -> K nu, tau -> Pi nu, B -> X_s gamma, K-K bar mixing, B^0_d-B^0_d bar mixing, and B^0_s-B^0_s bar mixing, we obtain constraints on the parameters in the 2HDMs. To calculate the constraints, we pay attention to a determination of CKM matrix elements and re-fit them to experimental data so that new contributions from additional Higgs bosons do not affect the determination. In addition, we discuss excesses of observables in the muon anomalous magnetic moment and the semi-tauonic B meson decays in the context of the 2HDM.
We study Two-Higgs-Doublet Models (2HDM) where Abelian symmetries have been introduced, leading to a drastic reduction in the number of free parameters in the 2HDM. Our analysis is inspired in BGL models, where, as the result of a symmetry of the Lagrangian, there are tree-level scalar mediated Flavour-Changing-Neutral-Currents, with the flavour structure depending only on the CKM matrix. A systematic analysis is done on the various possible schemes, which are classified in different classes, depending on the way the extra symmetries constrain the matrices of couplings defining the flavour structure of the scalar mediated neutral currents. All the resulting flavour textures of the Yukawa couplings are stable under renormalisation since they result from symmetries imposed at the Lagrangian level. We also present a brief phenomenological analysis of the most salient features of each class of symmetry constrained 2HDM.
In our previous work, we found new types of the cosmic string solutions in the Abelian-Higgs model with an enhanced $U(1)$ global symmetry. We dubbed those solutions as the compensated/uncompensated strings. The compensated string is similar to the conventional cosmic string in the Abrikosov-Nielsen-Olesen (ANO) string, around which only the would-be Nambu-Goldstone (NG) boson winds. Around the uncompensated string, on the other hand, the physical NG boson also winds, where the physical NG boson is associated with the spontaneous breaking of the enhanced symmetry. Our previous simulation in the 2+1 dimensional spacetime confirmed that both the compensated/uncompensated strings are formed at the phase transition of the symmetry breaking. Non-trivial winding of the physical NG boson around the strings potentially causes the so-called axion domain-wall problem when the model is applied to the axion model. In this paper, we perform simulation in the 3+1 dimensional spacetime to discuss the fate of the uncompensated strings. We observe that the evolution of the string-network is highly complicated in the 3+1 dimensional simulation compared with that seen in the previous simulation. Despite such complications, we find that the number of the uncompensated strings which could cause can be highly suppressed at late times. Our observation suggests that the present setup can be applied to the axion model without suffering from the axion domain-wall problem.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا