A moire superlattice on the surface of a topological insulator


Abstract in English

Twisting van der Waals heterostructures to induce correlated many-body states provides a novel tuning mechanism in solid-state physics. In this work, we theoretically investigate the fate of the surface Dirac cone of a three-dimensional topological insulator subject to a superlattice potential. Using a combination of diagrammatic perturbation theory, lattice model simulations, and ab initio calculations we elucidate the unique aspects of twisting a single Dirac cone with an induced moire potential and the role of the bulk topology on the reconstructed surface band structure. We report a dramatic renormalization of the surface Dirac cone velocity as well as demonstrate a topological obstruction to the formation of isolated minibands. Due to the topological nature of the bulk, surface band gaps cannot open; instead, additional satellite Dirac cones emerge, which can be highly anisotropic and made quite flat. We discuss the implications of our findings for future experiments.

Download