No Arabic abstract
We explore the persistence of the alignment of brightest cluster galaxies (BCGs) with their local environment. We find that a significant fraction of BCGs do not coincide with the centroid of the X-ray gas distribution and/or show peculiar velocities (they are not at rest with respect to the cluster mean). Despite this, we find that BCGs are generally aligned with the cluster mass distribution even when they have significant offsets from the X-ray centre and significant peculiar velocities. The large offsets are not consistent with simple theoretical models. To account for these observations BCGs must undergo mergers preferentially along their major axis, the main infall direction. Such BCGs may be oscillating within the cluster potential after having been displaced by mergers or collisions, or the dark matter halo itself may not yet be relaxed.
We have observed 433 z<=0.08 brightest cluster galaxies (BCGs) in a full-sky survey of Abell clusters. The BCG Hubble diagram is consistent to within 2% of a Omega_m=0.3, Lambda=0.7 Hubble relation. The L_m-alpha relation for BCGs, which uses alpha, the log-slope of the BCG photometric curve of growth, to predict metric luminosity, L_m, has 0.27 mag residuals. We measure central stellar velocity dispersions, sigma, of the BCGs, finding the Faber-Jackson relation to flatten as the metric aperture grows to include an increasing fraction of the total BCG luminosity. A 3-parameter metric plane relation using alpha and sigma together gives the best prediction of L_m, with 0.21 mag residuals. The projected spatial offset, r_x, of BCGs from the X-ray-defined cluster center is a gamma=-2.33 power-law over 1<r_x<10^3 kpc. The median offset is ~10 kpc, but ~15% of the BCGs have r_x>100 kpc. The absolute cluster-dispersion normalized BCG peculiar velocity |Delta V_1|/sigma_c follows an exponential distribution with scale length 0.39+/-0.03. Both L_m and alpha increase with sigma_c. The alpha parameter is further moderated by both the spatial and velocity offset from the cluster center, with larger alpha correlated with the proximity of the BCG to the cluster mean velocity or potential center. At the same time, position in the cluster has little effect on L_m. The luminosity difference between the BCG and second-ranked galaxy, M2, increases as the peculiar velocity of the BCG within the cluster decreases. Further, when M2 is a close luminosity rival of the BCG, the galaxy that is closest to either the velocity or X-ray center of the cluster is most likely to have the larger alpha. We conclude that the inner portions of the BCGs are formed outside the cluster, but interactions in the heart of the galaxy cluster grow and extend the envelopes of the BCGs.
We present the results of a survey of the brightest UV-selected galaxies in protoclusters. These proto-brightest cluster galaxy (proto-BCG) candidates are drawn from 179 overdense regions of $g$-dropout galaxies at $zsim4$ from the Hyper Suprime-Cam Subaru Strategic Program identified previously as good protocluster candidates. This study is the first to extend the systematic study of the progenitors of BCGs from $zsim2$ to $zsim4$. We carefully remove possible contaminants from foreground galaxies and, for each structure, we select the brightest galaxy that is at least 1 mag brighter than the fifth brightest galaxy. We select 63 proto-BCG candidates and compare their properties with those of galaxies in the field and those of other galaxies in overdense structures. The proto-BCG candidates and their surrounding galaxies have different rest-UV color $(i - z)$ distributions to field galaxies and other galaxies in protoclusters that do not host proto-BCGs. In addition, galaxies surrounding proto-BCGs are brighter than those in protoclusters without proto-BCGs. The image stacking analysis reveals that the average effective radius of proto-BCGs is $sim28%$ larger than that of field galaxies. The $i-z$ color differences suggest that proto-BCGs and their surrounding galaxies are dustier than other galaxies at $zsim4$. These results suggest that specific environmental effects or assembly biasses have already emerged in some protoclusters as early as $z sim 4$, and we suggest that proto-BCGs have different star formation histories than other galaxies in the same epoch.
By cross-matching the currently largest optical catalog of galaxy clusters and the NVSS radio survey database, we obtain the largest complete sample of brightest cluster galaxies (BCGs) in the redshift range of 0.05<z<0.45, which have radio emission and redshift information. We confirm that more powerful radio BCGs tend to be these optically very bight galaxies located in more relaxed clusters. We derived the radio luminosity functions of BCGs from the largest complete sample of BCGs, and find that the functions depend on the optical luminosity of BCGs and the dynamical state of galaxy clusters. However, the radio luminosity function does not show significant evolution with redshift.
Brightest Cluster Galaxies (BCGs) are mostly elliptical galaxies and very rarely have prominent star formation. We found that five out of 8,812 BCGs are E+A (i.e. post-starburst) galaxies, having the H$delta$~absorption line with an equivalent width $>2.5AA$ and no distinct emission lines in [O II] and H$alpha$. The E+A features we identified from the BCGs for the first time are not as significant as those in general galaxies, indicating that historically the star formation were not very violent.
Observations of 170 local ($zlesssim0.08$) galaxy clusters in the northern hemisphere have been obtained with the Wendelstein Telescope Wide Field Imager (WWFI). We correct for systematic effects such as point-spread function broadening, foreground star contamination, relative bias offsets, and charge persistence. Background inhomogeneities induced by scattered light are reduced down to $Delta {rm SB} > 31~g$ mag arcsec$^{-2}$ by large dithering and subtraction of night-sky flats. Residual background inhomogeneities brighter than ${rm SB}_{sigma}< 27.6~g$ mag arcsec$^{-2}$ caused by galactic cirrus are detected in front of 23% of the clusters. However, the large field of view allows discrimination between accretion signatures and galactic cirrus. We detect accretion signatures in the form of tidal streams in 22%, shells in 9.4%, and multiple nuclei in 47% of the Brightest Cluster Galaxies (BCGs) and find two BCGs in 7% of the clusters. We measure semimajor-axis surface brightness profiles of the BCGs and their surrounding Intracluster Light (ICL) down to a limiting surface brightness of ${rm SB} = 30~g$ mag arcsec$^{-2}$. The spatial resolution in the inner regions is increased by combining the WWFI light profiles with those that we measured from archival textit{Hubble Space Telescope} images or deconvolved WWFI images. We find that 71% of the BCG+ICL systems have surface brightness (SB) profiles that are well described by a single Sersic (SS) function, whereas 29% require a double Sersic (DS) function to obtain a good fit. We find that BCGs have scaling relations that differ markedly from those of normal ellipticals, likely due to their indistinguishable embedding in the ICL.