A local Torelli theorem for log symplectic manifolds


Abstract in English

We establish a local model for the moduli space of holomorphic symplectic structures with logarithmic poles, near the locus of structures whose polar divisor is normal crossings. In contrast to the case without poles, the moduli space is singular: when the cohomology class of a symplectic structure satisfies certain linear equations with integer coefficients, its polar divisor can be partially smoothed, yielding adjacent irreducible components of the moduli space that correspond to possibly non-normal crossings structures. These components are indexed by combinatorial data we call smoothing diagrams, and amenable to algorithmic classification. Applying the theory to four-dimensional projective space, we obtain a total of 40 irreducible components of the moduli space, most of which are new. Our main technique is a detailed analysis of the relevant deformation complex (the Poisson cohomology) as an object of the constructible derived category.

Download