Block size dependence of coarse graining in discrete opinion dynamics model: Application to the US presidential elections


Abstract in English

The electoral college of voting system for the US presidential election is analogous to a coarse graining procedure commonly used to study phase transitions in physical systems. In a recent paper, opinion dynamics models manifesting a phase transition, were shown to be able to explain the cases when a candidate winning more number of popular votes could still lose the general election on the basis of the electoral college system. We explore the dependence of such possibilities on various factors like the number of states and total population (i.e., system sizes) and get an interesting scaling behavior. In comparison with the real data, it is shown that the probability of the minority win, calculated within the model assumptions, is indeed near the highest possible value. In addition, we also implement a two step coarse graining procedure, relevant for both opinion dynamics and information theory.

Download