No Arabic abstract
A new Muon-to-Central-Trigger Processor Interface (MUCTPI) was built as part of the upgrade of the ATLAS Level-1 trigger system for the next Run of the Large Hadron Collider at CERN. The MUCTPI has 208 high-speed optical serial links for receiving muon candidates from the muon trigger detectors. Three high-end FPGAs are used for real-time processing of the muon candidates, for sending trigger information to other parts of the trigger system, and for sending summary information to the data acquisition and monitoring system. A System-on-Chip (SoC) is used for the control, configuration and monitoring of the hardware and the operation of the MUCTPI. The SoC consists of an FPGA part and a processor system. The FPGA part provides communication with the processing FPGAs, while the processor system runs software for communication with the run-control system of the ATLAS experiment. In this paper we will describe our experience with running CentOS Linux on the SoC. Cross-compilation together with the existing framework for building of the ATLAS trigger and data acquisition (TDAQ) software is being used in order to allow the deployment of the TDAQ software directly on the SoC.
ATLAS is making extensive efforts towards preparing a detector upgrade for the high luminosity operations of the LHC (HL-LHC), which will commence operation in about 10 years. The current ATLAS Inner Detector will be replaced by an all-silicon tracker (comprising an inner Pixel tracker and outer Strip tracker). The software currently used for the new silicon tracker is broadly inherited from that used for the LHC Run-1 and Run-2, but many new developments have been made to better fulfill the future detector and operation requirements. One aspect in particular which will be highlighted is the simulation software for the Strip tracker. The available geometry description software (including the detailed description for all the sensitive elements, the services, etc.) did not allow for accurate modelling of the planned detector design. A range of sensors/layouts for the Strip tracker are being considered and must be studied in detailed simulations in order to assess the performance and ascertain that requirements are met. For this, highly flexibility geometry building is required from the simulation software. A new Xml-based detector description framework has been developed to meet the aforementioned challenges. We will present the design of the framework and its validation results.
Results of beam tests with planar silicon pixel sensors aimed towards the ATLAS Insertable B-Layer and High Luminosity LHC (HL-LHC) upgrades are presented. Measurements include spatial resolution, charge collection performance and charge sharing between neighbouring cells as a function of track incidence angle for different bulk materials. Measurements of n-in-n pixel sensors are presented as a function of fluence for different irradiations. Furthermore p-type silicon sensors from several vendors with slightly differing layouts were tested. All tested sensors were connected by bump-bonding to the ATLAS Pixel read-out chip. We show that both n-type and p-type tested planar sensors are able to collect significant charge even after integrated fluences expected at HL-LHC.
To cope with the harsh environment foreseen at the high luminosity conditions of HL- LHC, the ATLAS pixel detector has to be upgraded to be fully efficient with a good granularity, a maximized geometrical acceptance and an high read out rate. LPNHE, FBK and INFN are involved in the development of thin and edgeless planar pixel sensors in which the insensitive area at the border of the sensor is minimized thanks to the active edge technology. In this paper we report on two productions, a first one consisting of 200 {mu}m thick n-on-p sensors with active edge, a second one composed of 100 and 130 {mu}m thick n-on-p sensors. Those sensors have been tested on beam, both at CERN-SPS and at DESY and their performance before and after irradiation will be presented.
The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). This glue has several disadvantages, which motivated the search for an alternative. This paper presents a study concerning the use of six ultra-violet (UV) cure glues and a glue pad for use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, the thermal conduction and shear strength, thermal cycling, radiation hardness, corrosion resistance and shear strength tests. These investigations led to the exclusion of three UV cure glues as well as the glue pad. Three UV cure glues were found to be possible better alternatives. Results from electrical tests of first prototype modules constructed using these glues are presented.
This paper presents a readout system designed for testing the prototype of Small-Strip Thin Gap Chamber (sTGC), which is one of the main detector technologies used for ATLAS New-Small-Wheel Upgrade. This readout system aims at testing one full-size sTGC quadruplet with cosmic muon triggers.