Do you want to publish a course? Click here

Primes in geometric series and finite permutation groups

77   0   0.0 ( 0 )
 Added by Gareth Jones
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

As a consequence of the classification of finite simple groups, the classification of permutation groups of prime degree is complete, apart from the question of when the natural degree $(q^n-1)/(q-1)$ of ${rm L}_n(q)$ is prime. We present heuristic arguments and computational evidence to support a conjecture that for each prime $nge 3$ there are infinitely many primes of this form, even if one restricts to prime values of $q$.



rate research

Read More

We present a generic algorithm for computing discrete logarithms in a finite abelian p-group H, improving the Pohlig-Hellman algorithm and its generalization to noncyclic groups by Teske. We then give a direct method to compute a basis for H without using a relation matrix. The problem of computing a basis for some or all of the Sylow p-subgroups of an arbitrary finite abelian group G is addressed, yielding a Monte Carlo algorithm to compute the structure of G using O(|G|^0.5) group operations. These results also improve generic algorithms for extracting pth roots in G.
In previous work, the authors confirmed the speculation of J. G. Thompson that certain multiquadratic fields are generated by specified character values of sufficiently large alternating groups $A_n$. Here we address the natural generalization of this speculation to the finite general linear groups $mathrm{GL}_mleft(mathbb{F}_qright)$ and $mathrm{SL}_2left(mathbb{F}_qright)$.
72 - Daniel C. Mayer 2020
For each odd prime p>=5, there exist finite p-groups G with derived quotient G/D(G)=C(p)xC(p) and nearly constant transfer kernel type k(G)=(1,2,...,2) having two fixed points. It is proved that, for p=7, this type k(G) with the simplest possible case of logarithmic abelian quotient invariants t(G)=(11111,111,21,21,21,21,21,21) of the eight maximal subgroups is realized by exactly 98 non-metabelian Schur sigma-groups S of order 7^11 with fixed derived length dl(S)=3 and metabelianizations S/D(D(S)) of order 7^7. For p=5, the type k(G) with t(G)=(2111,111,21,21,21,21) leads to infinitely many non-metabelian Schur sigma-groups S of order at least 5^14 with unbounded derived length dl(S)>=3 and metabelianizations S/D(D(S)) of fixed order 5^7. These results admit the conclusion that d=-159592 is the first known discriminant of an imaginary quadratic field with 7-class field tower of precise length L=3, and d=-90868 is a discriminant of an imaginary quadratic field with 5-class field tower of length L>=3, whose exact length remains unknown.
In this note we give a self-contained proof of the following classification (up to conjugation) of subgroups of the general symplectic group of dimension n over a finite field of characteristic l, for l at least 5, which can be derived from work of Kantor: G is either reducible, symplectically imprimitive or it contains Sp(n, l). This result is for instance useful for proving big image results for symplectic Galois representations.
We define an excedance number for the multi-colored permutation group, i.e. the wreath product of Z_{r_1} x ... x Z_{r_k} with S_n, and calculate its multi-distribution with some natural parameters. We also compute the multi-distribution of the parameters exc(pi) and fix(pi) over the sets of involutions in the multi-colored permutation group. Using this, we count the number of involutions in this group having a fixed number of excedances and absolute fixed points.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا