Do you want to publish a course? Click here

IM Normae: The Death Spiral of a Cataclysmic Variable?

82   0   0.0 ( 0 )
 Added by Jonathan Kemp
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a study of the orbital light curves of the recurrent nova IM Normae since its 2002 outburst. The broad eclipses recur with a 2.46 hour period, which increases on a timescale of 1.28(16)x10^6 years. Under the assumption of conservative mass-transfer, this suggests a rate near 10^-7 M_sol/year, and this agrees with the estimated /accretion/ rate of the postnova, based on our estimate of luminosity. IM Nor appears to be a close match to the famous recurrent nova T Pyxidis. Both stars appear to have very high accretion rates, sufficient to drive the recurrent-nova events. Both have quiescent light curves which suggest strong heating of the low-mass secondary, and very wide orbital minima which suggest obscuration of a large corona around the primary. And both have very rapid orbital period increases, as expected from a short-period binary with high mass transfer from the low-mass component. These two stars may represent a final stage of nova -- and cataclysmic-variable -- evolution, in which irradiation-driven winds drive a high rate of mass transfer, thereby evaporating the donor star in a paroxysm of nova outbursts.



rate research

Read More

We report simultaneous observations of the flaring behaviour of the cataclysmic variable star AE Aqr. The observations are in Johnson B and V bands. The colour-magnitude diagrams (B-V versus V and B-V vs. B) show that the star becomes blues as it becomes brighter. In our model AE Aqr behaviour can be explained with flares (fireballs) with 0.03 < B-V < 0.30 and temperature in the interval 8000 < T < 12000.
We identify a new, bright transient in the Kepler/K2 Campaign 11 field. Its light curve rises over seven magnitudes in a day and then declines three magnitudes over a month before quickly fading another two magnitudes. The transient was still detectable at the end of the campaign. The light curve is consistent with a WZ~Sge type dwarf nova outburst. Early superhumps with a period of 82 minutes are seen in the first 10 days and suggest that this is the orbital period of the binary which is typical for the WZ~Sge class. Strong superhump oscillations develop ten days after peak brightness with periods ranging between 83 and 84 minutes. At 25 days after the peak brightness a bump in the light curve appears to signal a subtle rebrightening phase implying that this was an unusual type-A outburst. This is the only WZ~Sge type system observed by Kepler/K2 during an outburst. The early rise of this outburst is well-fit with a broken power law. In first 10 hours the system brightened linearly and then transitioned to a steep rise with a power law index of 4.8. Looking at archival Kepler/K2 data and new TESS observations, a linear rise in the first several hours at the initiation of a superoutburst appears to be common in SU~UMa stars.
We report the discovery of a new eclipsing polar, CRTS J035010.7+323230 (hereafter CRTS J0350+3232). We identified this cataclysmic variable (CV) candidate as a possible polar from its multi-year Catalina Real-Time Transient Survey (CRTS) optical light curve. Photometric monitoring of 22 eclipses in 2015 and 2017 was performed with the 2.1-m Otto Struve Telescope at McDonald Observatory. We derive an unambiguous high-precision ephemeris. Strong evidence that CRTS J0350+3232 is a polar comes from optical spectroscopy obtained over a complete orbital cycle using the Apache Point Observatory 3.5-m telescope. High velocity Balmer and He II $lambda$4686{AA} emission line equivalent width ratios, structures, and variations are typical of polars and are modulated at the same period, 2.37-hrs (142.3-min), as the eclipse to within uncertainties. The spectral energy distribution and luminosity is found to be comparable to that of AM Herculis. Pre-eclipse dips in the light curve show evidence for stream accretion. We derive the following tentative binary and stellar parameters assuming a helium composition white dwarf and a companion mass of 0.2 M$_{odot}$: inclination i = 74.68$^{o}$ ${pm}$ 0.03$^{o}$, semi-major axis a = 0.942 ${pm}$ 0.024 R$_{odot}$, and masses and radii of the white dwarf and companion respectively: M$_{1}$ = 0.948 $^{+0.006}_{-0.012}$ M$_{odot}$, R$_{1}$ = 0.00830 $^{+0.00012}_{-0.00006}$ R$_{odot}$, R$_{2}$ = 0.249 ${pm}$ 0.002 R$_{odot}$. As a relatively bright (V $sim$ 17-19 mag), eclipsing, period-gap polar, CRTS J0350+3232 will remain an important laboratory for the study of accretion and angular momentum evolution in polars.
136 - G. Subebekova 2020
We obtained photometric observations of the nova-like cataclysmic variable RW Tri and gathered all available AAVSO and other data from the literature. We determined the system parameters and found their uncertainties using the code developed by us to model the light curves of binary systems. New time-resolved optical spectroscopic observations of RW Tri were also obtained to study the properties of emission features produced by the system. The usual interpretation of the single-peaked emission lines in nova-like systems is related to the bi-conical wind from the accretion discs inner part. However, we found that the Halpha emission profile is comprised of two components with different widths. We argue that the narrow component originates from the irradiated surface of the secondary, while the broader components source is an extended, low-velocity region in the outskirts of the accretion disc, located opposite to the collision point of the accretion stream and the disc. It appears to be a common feature for long-period nova-like systems -- a point we discuss.
We have developed a numerical MHD model of the propeller candidate star AE Aqr using axisymmetric magneto-hydrodynamic (MHD) simulations. We suggest that AE Aqr is an intermediate polar-type star, where the magnetic field is relatively weak and an accretion disc may form around the white dwarf. The star is in the propeller regime, and many of its observational properties are determined by the disc-magnetosphere interaction. Comparisons of the characteristics of the observed versus modelled AE Aqr star show that the model can explain many observational properties of AE Aqr. In a representative model, the magnetic field of the star is Bapprox 3.3x10^5 G and the time averaged accretion rate in the disc is 5.5times 10^{16} g/s. Most of this matter is ejected into conically-shaped winds. The numerical model explains the rapid spin-down of AE Aqr through the outflow of angular momentum from the surface of the star to the wind, corona and disc. The energy budget in the outflows, 9x10^{33} erg/s, is sufficient for explaining the observed flaring radiation in different wavebands. The time scale of ejections into the wind matches the short time scale variability in the light curves of AE Aqr.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا