Do you want to publish a course? Click here

Reliable Evaluations for Natural Language Inference based on a Unified Cross-dataset Benchmark

106   0   0.0 ( 0 )
 Added by Guanhua Zhang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Recent studies show that crowd-sourced Natural Language Inference (NLI) datasets may suffer from significant biases like annotation artifacts. Models utilizing these superficial clues gain mirage advantages on the in-domain testing set, which makes the evaluation results over-estimated. The lack of trustworthy evaluation settings and benchmarks stalls the progress of NLI research. In this paper, we propose to assess a models trustworthy generalization performance with cross-datasets evaluation. We present a new unified cross-datasets benchmark with 14 NLI datasets, and re-evaluate 9 widely-used neural network-based NLI models as well as 5 recently proposed debiasing methods for annotation artifacts. Our proposed evaluation scheme and experimental baselines could provide a basis to inspire future reliable NLI research.



rate research

Read More

We present SherLIiC, a testbed for lexical inference in context (LIiC), consisting of 3985 manually annotated inference rule candidates (InfCands), accompanied by (i) ~960k unlabeled InfCands, and (ii) ~190k typed textual relations between Freebase entities extracted from the large entity-linked corpus ClueWeb09. Each InfCand consists of one of these relations, expressed as a lemmatized dependency path, and two argument placeholders, each linked to one or more Freebase types. Due to our candidate selection process based on strong distributional evidence, SherLIiC is much harder than existing testbeds because distributional evidence is of little utility in the classification of InfCands. We also show that, due to its construction, many of SherLIiCs correct InfCands are novel and missing from existing rule bases. We evaluate a number of strong baselines on SherLIiC, ranging from semantic vector space models to state of the art neural models of natural language inference (NLI). We show that SherLIiC poses a tough challenge to existing NLI systems.
While natural language processing systems often focus on a single language, multilingual transfer learning has the potential to improve performance, especially for low-resource languages. We introduce XLDA, cross-lingual data augmentation, a method that replaces a segment of the input text with its translation in another language. XLDA enhances performance of all 14 tested languages of the cross-lingual natural language inference (XNLI) benchmark. With improvements of up to $4.8%$, training with XLDA achieves state-of-the-art performance for Greek, Turkish, and Urdu. XLDA is in contrast to, and performs markedly better than, a more naive approach that aggregates examples in various languages in a way that each example is solely in one language. On the SQuAD question answering task, we see that XLDA provides a $1.0%$ performance increase on the English evaluation set. Comprehensive experiments suggest that most languages are effective as cross-lingual augmentors, that XLDA is robust to a wide range of translation quality, and that XLDA is even more effective for randomly initialized models than for pretrained models.
Natural Language Inference (NLI) is the task of inferring the logical relationship, typically entailment or contradiction, between a premise and hypothesis. Code-mixing is the use of more than one language in the same conversation or utterance, and is prevalent in multilingual communities all over the world. In this paper, we present the first dataset for code-mixed NLI, in which both the premises and hypotheses are in code-mixed Hindi-English. We use data from Hindi movies (Bollywood) as premises, and crowd-source hypotheses from Hindi-English bilinguals. We conduct a pilot annotation study and describe the final annotation protocol based on observations from the pilot. Currently, the data collected consists of 400 premises in the form of code-mixed conversation snippets and 2240 code-mixed hypotheses. We conduct an extensive analysis to infer the linguistic phenomena commonly observed in the dataset obtained. We evaluate the dataset using a standard mBERT-based pipeline for NLI and report results.
Natural language inference (NLI) is formulated as a unified framework for solving various NLP problems such as relation extraction, question answering, summarization, etc. It has been studied intensively in the past few years thanks to the availability of large-scale labeled datasets. However, most existing studies focus on merely sentence-level inference, which limits the scope of NLIs application in downstream NLP problems. This work presents DocNLI -- a newly-constructed large-scale dataset for document-level NLI. DocNLI is transformed from a broad range of NLP problems and covers multiple genres of text. The premises always stay in the document granularity, whereas the hypotheses vary in length from single sentences to passages with hundreds of words. Additionally, DocNLI has pretty limited artifacts which unfortunately widely exist in some popular sentence-level NLI datasets. Our experiments demonstrate that, even without fine-tuning, a model pretrained on DocNLI shows promising performance on popular sentence-level benchmarks, and generalizes well to out-of-domain NLP tasks that rely on inference at document granularity. Task-specific fine-tuning can bring further improvements. Data, code, and pretrained models can be found at https://github.com/salesforce/DocNLI.
Dual decomposition, and more generally Lagrangian relaxation, is a classical method for combinatorial optimization; it has recently been applied to several inference problems in natural language processing (NLP). This tutorial gives an overview of the technique. We describe example algorithms, describe formal guarantees for the method, and describe practical issues in implementing the algorithms. While our examples are predominantly drawn from the NLP literature, the material should be of general relevance to inference problems in machine learning. A central theme of this tutorial is that Lagrangian relaxation is naturally applied in conjunction with a broad class of combinatorial algorithms, allowing inference in models that go significantly beyond previous work on Lagrangian relaxation for inference in graphical models.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا