No Arabic abstract
Current text classification methods typically require a good number of human-labeled documents as training data, which can be costly and difficult to obtain in real applications. Humans can perform classification without seeing any labeled examples but only based on a small set of words describing the categories to be classified. In this paper, we explore the potential of only using the label name of each class to train classification models on unlabeled data, without using any labeled documents. We use pre-trained neural language models both as general linguistic knowledge sources for category understanding and as representation learning models for document classification. Our method (1) associates semantically related words with the label names, (2) finds category-indicative words and trains the model to predict their implied categories, and (3) generalizes the model via self-training. We show that our model achieves around 90% accuracy on four benchmark datasets including topic and sentiment classification without using any labeled documents but learning from unlabeled data supervised by at most 3 words (1 in most cases) per class as the label name.
A major challenge of multi-label text classification (MLTC) is to stimulatingly exploit possible label differences and label correlations. In this paper, we tackle this challenge by developing Label-Wise Pre-Training (LW-PT) method to get a document representation with label-aware information. The basic idea is that, a multi-label document can be represented as a combination of multiple label-wise representations, and that, correlated labels always cooccur in the same or similar documents. LW-PT implements this idea by constructing label-wise document classification tasks and trains label-wise document encoders. Finally, the pre-trained label-wise encoder is fine-tuned with the downstream MLTC task. Extensive experimental results validate that the proposed method has significant advantages over the previous state-of-the-art models and is able to discover reasonable label relationship. The code is released to facilitate other researchers.
Inductive transfer learning has greatly impacted computer vision, but existing approaches in NLP still require task-specific modifications and training from scratch. We propose Universal Language Model Fine-tuning (ULMFiT), an effective transfer learning method that can be applied to any task in NLP, and introduce techniques that are key for fine-tuning a language model. Our method significantly outperforms the state-of-the-art on six text classification tasks, reducing the error by 18-24% on the majority of datasets. Furthermore, with only 100 labeled examples, it matches the performance of training from scratch on 100x more data. We open-source our pretrained models and code.
Transformer-based language models have shown to be very powerful for natural language generation (NLG). However, text generation conditioned on some user inputs, such as topics or attributes, is non-trivial. Past approach relies on either modifying the original LM architecture, re-training the LM on corpora with attribute labels, or having separately trained `guidance models to guide text generation in decoding. We argued that the above approaches are not necessary, and the original unconditioned LM is sufficient for conditioned NLG. We evaluated our approaches by the samples fluency and diversity with automated and human evaluation.
The massive growth of digital biomedical data is making biomedical text indexing and classification increasingly important. Accordingly, previous research has devised numerous deep learning techniques focused on using feedforward, convolutional or recurrent neural architectures. More recently, fine-tuned transformers-based pretrained models (PTMs) have demonstrated superior performance compared to such models in many natural language processing tasks. However, the direct use of PTMs in the biomedical domain is only limited to the target documents, ignoring the rich semantic information in the label descriptions. In this paper, we develop an improved label attention-based architecture to inject semantic label description into the fine-tuning process of PTMs. Results on two public medical datasets show that the proposed fine-tuning scheme outperforms the conventionally fine-tuned PTMs and prior state-of-the-art models. Furthermore, we show that fine-tuning with the label attention mechanism is interpretable in the interpretability study.
Large Transformer-based language models such as BERT have led to broad performance improvements on many NLP tasks. Domain-specific variants of these models have demonstrated excellent performance on a variety of specialised tasks. In legal NLP, BERT-based models have led to new state-of-the-art results on multiple tasks. The exploration of these models has demonstrated the importance of capturing the specificity of the legal language and its vocabulary. However, such approaches suffer from high computational costs, leading to a higher ecological impact and lower accessibility. Our findings, focusing on English language legal text, show that lightweight LSTM-based Language Models are able to capture enough information from a small legal text pretraining corpus and achieve excellent performance on short legal text classification tasks. This is achieved with a significantly reduced computational overhead compared to BERT-based models. However, our method also shows degraded performance on a more complex task, multi-label classification of longer documents, highlighting the limitations of this lightweight approach.