No Arabic abstract
A novel single-sideband (SSB) time-modulated technique with 2-bit phase shifters is proposed. The timemodulated module is implemented by adding periodic phase modulation to 2-bit phase shifters, which is simpler without performance loss compared to existing SSB time-modulated method. During one modulation period, four phase states (0, {pi}/2, {pi}, 3{pi}/2) of 2-bit phase shifters are switched in sequence. After the modulation, the SSB time modulation is realized and the main power is distributed to the first harmonic component. The feasibility of the proposed method is verified by experiments. The undesired harmonics are efficiently suppressed. Meanwhile, 80{deg} beam scanning range are realized through the proposed module.
For E-band wireless communications, a high gain steerable antenna with sub-arrays is desired to reduce the implementation complexity. This paper presents an E-band communication link with 256-elements antennas based on 8-elements sub-arrays and four beam-forming chips in silicon germanium (SiGe) bipolar complementary metal-oxide-semiconductor (BiCMOS), which is packaged on a 19-layer low temperature co-fired ceramic (LTCC) substrate. After the design and manufacture of the 256-elements antenna, a fast near-field calibration method is proposed for calibration, where a single near-field measurement is required. Then near-field to far-field (NFFF) transform and far-field to near-field (FFNF) transform are used for the bore-sight calibration. The comparison with high frequency structure simulator (HFSS) is utilized for the non-bore-sight calibration. Verified on the 256-elements antenna, the beam-forming performance measured in the chamber is in good agreement with the simulations. The communication in the office environment is also realized using a fifth generation (5G) new radio (NR) system, whose bandwidth is 400 megahertz (MHz) and waveform format is orthogonal frequency division multiplexing (OFDM) with 120 kilohertz (kHz) sub-carrier spacing.
In this report we present a model for phased array feed (PAF) and compare the model predictions with measurements. A theory for loss-less PAF is presented first. To develop the theory we ask the question -- what is the best $T_{sys}/eta_{ap}$ that can be achieved when a PAF is used on a telescope to observe a source at an angle $theta_s, phi_s$ from the boresight direction ? We show that a characteristic matrix for the {em system} (i.e. PAF+telescope+receiver) can be constructed starting from the signal-to-noise ratio of the observations and the best $T_{sys}/eta_{ap}$ can be obtained from the maximum eigenvalue of the characteristic matrix. For constructing the characteristic matrix, we derive the open-circuit voltage at the output of the antenna elements in the PAF due to (a) radiation from source, (b) radiation from ground (spillover), (c) radiation from sky background and (d) noise due to the receiver. The characteristic matrix is then obtained from the correlation matrices of these voltages. We then describe a modeling program developed to implement the theory presented here. Finally the model predictions are compared with results from test observations made toward Virgo A with a prototype PAF (Kite array) on the GBT (Roshi et al. 2015).
In radio astronomy, holography is a commonly used technique to create an image of the electric field distribution in the aperture of a dish antenna. The image is used to detect imperfections in the reflector surface. Similarly, holography can be applied to phased array telescopes, in order to measure the complex gains of the receive paths of individual antennas. In this paper, a holographic technique is suggested to calibrate the digital beamformer of a phased array telescope. The effectiveness of the technique was demonstrated by applying it on data from the Engineering Development Array 2, one of the prototype stations of the low frequency component of the Square Kilometre Array. The calibration method is very quick and requires few resources. In contrast to holography for dish antennas, it works without a reference antenna. We demonstrate the utility of this technique for initial station commissioning and verification as well as for routine station calibration.
The design of a conical phased array antenna for air traffic control (ATC) radar systems is addressed in this work. The array, characterized by a fully digital beam-forming (DBF) architecture, is composed of equal vertical modules consisting of linear sparse arrays able to generate on receive multiple instantaneous beams pointing along different elevation directions. The synthesis problem is cast in the Compressive Sensing (CS) framework to achieve the best trade-off between the antenna complexity (i.e., minimum number of array elements and/or radio frequency components) and radiation performance (i.e., matching of a set of reference patterns). Towards this aim, the positions of the array elements and the set of complex element excitations of each beam are jointly defined through a customized CS-based optimization tool. Representative numerical results, concerned with ideal as well as real antenna models, are reported and discussed to validate the proposed design strategy and point out the features of the deigned modular sparse arrays also in comparison with those obtained from conventional arrays with uniformly spaced elements.
We report results from a neutral hydrogen (HI) intensity mapping survey conducted with a Phased Array Feed (PAF) on the Parkes telescope. The survey was designed to cover ~ 380 deg^2 over the redshift range 0.3 < z < 1 (a volume of ~ 1.5 Gpc^3) in four fields covered by the WiggleZ Dark Energy Survey. The results presented here target a narrow redshift range of 0.73 < z < 0.78 where the effect of radio frequency interference (RFI) was less problematic. The data reduction and simulation pipeline is described, with an emphasis on flagging of RFI and correction for signal loss in the data reduction process, particularly due to the foreground subtraction methodology. A cross-correlation signal was detected between the HI intensity maps and the WiggleZ redshift data, with a mean amplitude of<{Delta}T_b{delta}_{opt}> = 1.32 pm 0.42 mK (statistical errors only). A future Parkes cryogenic PAF is expected to detect the cross-correlation signal with higher accuracy than previously possible and allow measurement of the cosmic HI density at redshifts up to unity.