Do you want to publish a course? Click here

Autonomous quantum absorption refrigerators

78   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a quantum absorption refrigerator using the quantum physics of resonant tunneling through quantum dots. The cold and hot reservoirs are fermionic leads, tunnel coupled via quantum dots to a central fermionic cavity, and we propose configurations in which the heat absorbed from the (very hot) central cavity is used as a resource to selectively transfer heat from the cold reservoir on the left, to the hot reservoir on the right. The heat transport in the device is particle---hole symmetric; we find two regimes of cooling as a function of the energy of the dots---symmetric with respect to the Fermi energy of the reservoirs---and we associate them to heat transfer by electrons above the Fermi level, and holes below the Fermi level, respectively. We also discuss optimizing the cooling effect by fine-tuning the energy of the dots as well as their linewidth, and characterize regimes where the transport is thermodynamically reversible such that Carnot Coefficent of Performance is achieved with zero cooling power delivered.



rate research

Read More

108 - Junjie Liu , Dvira Segal 2020
The thermodynamic uncertainty relation, originally derived for classical Markov-jump processes, provides a trade-off relation between precision and dissipation, deepening our understanding of the performance of quantum thermal machines. Here, we examine the interplay of quantum system coherences and heat current fluctuations on the validity of the thermodynamics uncertainty relation in the quantum regime. To achieve the current statistics, we perform a full counting statistics simulation of the Redfield quantum master equation. We focus on steady-state quantum absorption refrigerators where nonzero coherence between eigenstates can either suppress or enhance the cooling power, compared with the incoherent limit. In either scenario, we find enhanced relative noise of the cooling power (standard deviation of the power over the mean) in the presence of system coherence, thereby corroborating the thermodynamic uncertainty relation. Our results indicate that fluctuations necessitate consideration when assessing the performance of quantum coherent thermal machines.
We show that graphene possesses a strong nonlinear optical response in the form of multi-plasmon absorption, with exciting implications in classical and quantum nonlinear optics. Specifically, we predict that graphene nano-ribbons can be used as saturable absorbers with low saturation intensity in the far-infrared and terahertz spectrum. Moreover, we predict that two-plasmon absorption and extreme localization of plasmon fields in graphene nano-disks can lead to a plasmon blockade effect, in which a single quantized plasmon strongly suppresses the possibility of exciting a second plasmon.
We derive cooling rate and coefficient of performance as well as their variances for a quantum Otto engine proceeding in finite-time cycle period. This machine consists of two driven strokes, where the system isolated from the heat reservoir undergoes finite-time unitary transformation, and two isochoric steps, where the finite-time system-bath interaction durations take the system away from the equilibrium even at the respective ends of the two stages. We explicitly calculate the statistics of cooling rate and coefficient of performance for the machine operating with an analytically solvable two-level system. We clarify the role of finite-time durations of four processes on the machine performance. We show that there is the trade-off between the performance parameter and its corresponding variance, thereby indicating that the cooling rate or coefficient of performance can be enhanced, but at the cost of increasing the corresponding fluctuations.
We explore the possibility of enhancing the performance of small thermal machines by the presence of common noise sources. In particular, we study a prototypical model for an autonomous quantum refrigerator comprised by three qubits coupled to thermal reservoirs at different temperatures. Our results show that engineering the coupling to the reservoirs to act as common environments lead to relevant improvements in the performance. The enhancements arrive to almost double the cooling power of the original fridge without compromising its efficiency. The greater enhancements are obtained when the refrigerator may benefit from the presence of a decoherence-free subspace. The influence of coherent effects in the dissipation due to one- and two-spin correlated processes is also examined by comparison with an equivalent incoherent yet correlated model of dissipation.
54 - B. Roussel , C. Cabart , G. F`eve 2016
The recent developments of electron quantum optics in quantum Hall edge channels have given us new ways to probe the behavior of electrons in quantum conductors. It has brought new quantities called electronic coherences under the spotlight. In this paper, we explore the relations between electron quantum optics and signal processing through a global review of the various methods for accessing single- and two-electron coherences in electron quantum optics. We interpret electron quantum optics interference experiments as analog signal processing converting quantum signals into experimentally observable quantities such as current averages and correlations. This point of view also gives us a procedure to obtain quantum information quantities from electron quantum optics coherences. We illustrate these ideas by discussing two mode entanglement in electron quantum optics. We also sketch how signal processing ideas may open new perspectives for representing electronic coherences in quantum conductors and understand the properties of the underlying many-body electronic state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا