Do you want to publish a course? Click here

Thermoelectricity of Tin Selenide Monolayers Across a Structural Phase Transition

75   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

SnSe monolayers experience a temperature induced two-dimensional Pnm2$_1 to$ P4/nmm structural transformation precipitated by the softening of vibrational modes. The standard theoretical treatment of thermoelectricity---which relies on a zero temperature phonon dispersion and on a zero temperature electronic structure---is incapable of describing thermoelectric phenomena induced by structural transformations. Relying on structural data obtained from {em ab initio} molecular dynamics calculations that is utilized in a non-standard way to inform of electronic and vibrational transport coefficients, the present work establishes a general route to understand thermoelectricity across phase transitions. Similar to recent experimental observations pointing to an overestimated thermoelectric figure of merit $ZT$ past the transition temperature, our work indicates a smaller $ZT$ when compared to its value predicted by the standard paradigm. Its decrease is related to the dramatic changes in the electrical conductivity and lattice thermal conductivity as the structural transformation ensues. Though exemplified on a SnSe monolayer, the method does not have any built-in assumptions concerning dimensionality, and thus applicable to arbitrary thermoelectric materials in one, two, and three dimensions.

rate research

Read More

The group IV-VI compound SnSe, with an orthorhombic lattice structure, has recently attracted particular interest due to its unexpectedly low thermal conductivity and high power factor, showing great promise for thermoelectric applications. SnSe displays intriguing anisotropic properties due to the puckered low-symmetry in-plane lattice structure. Low-dimensional materials have potential advantages in improving the efficiency of thermoelectric conversion, due to the increased power factor and decreased thermal conductivity. A complete study of the optical and electrical anisotropies of SnSe nanostructures is a necessary prerequisite in taking advantage of the material properties for high performance devices. Here, we synthesize the single crystal SnSe nanoplates (NPs) by chemical vapor deposition. The angular dependence of the polarized Raman spectra of SnSe NPs shows anomalous anisotropic light-mater interaction. The angle-resolved charge transport of the SnSe NPs expresses a strong anisotropic conductivity behavior. These studies elucidate the anisotropic interactions which will be of use for future ultrathin SnSe in electronic, thermoelectric and optoelectronic devices.
GeSe and SnSe monochalcogenide monolayers and bilayers undergo a two-dimensional phase transition from a rectangular unit cell to a square unit cell at a temperature $T_c$ well below the melting point. Its consequences on material properties are studied within the framework of Car-Parrinello molecular dynamics and density-functional theory. No in-gap states develop as the structural transition takes place, so that these phase-change materials remain semiconducting below and above $T_c$. As the in-plane lattice transforms from a rectangle onto a square at $T_c$, the electronic, spin, optical, and piezo-electric properties dramatically depart from earlier predictions. Indeed, the $Y-$ and $X-$points in the Brillouin zone become effectively equivalent at $T_c$, leading to a symmetric electronic structure. The spin polarization at the conduction valley edge vanishes, and the hole conductivity must display an anomalous thermal increase at $T_c$. The linear optical absorption band edge must change its polarization as well, making this structural and electronic evolution verifiable by optical means. Much excitement has been drawn by theoretical predictions of giant piezo-electricity and ferroelectricity in these materials, and we estimate a pyroelectric response of about $3times 10^{-12}$ $C/K m$ here. These results uncover the fundamental role of temperature as a control knob for the physical properties of few-layer group-IV monochalcogenides
We investigate the effect of controlled annealing on the structural and electronic phase evolution of Tin dioxide from Tin (II) oxyhydroxide prepared by simple precipitation method. Thermogravimetric analysis suggests a complex weight loss-gain process involved, passing through an intermediate phase of tin oxide nanoparticles. The probable structural and electronic phase evolution is discussed using detailed X-ray diffraction and X-ray photoelectron spectroscopy investigations.
By means of first-principles calculations, we investigate the thermal properties of silica as it evolves, under hydrostatic compression, from a stishovite phase into a CaCl$_2$-type structure. We compute the thermal conductivity tensor by solving the linearized Boltzmann transport equation iteratively in a wide temperature range, using for this the pressure-dependent harmonic and anharmonic interatomic couplings obtained from first principles. Most remarkably, we find that, at low temperatures, SiO$_2$ displays a large peak in the in-plane thermal conductivity and a highly anisotropic behavior close to the structural transformation. We trace back the origin of these features by analyzing the phonon contributions to the conductivity. We discuss the implications of our results in the general context of continuous structural transformations in solids, as well as the potential geological interest of our results for silica.
The phase transition between type-I and type-II Dirac semimetals will reveal a series of significant physical properties because of their completely distinct electronic, optical and magnetic properties. However, no mechanism and materials have been proposed to realize the transition to date. Here, we propose that the transition can be realized in two-dimensional (2D) materials consisting of zigzag chains, by tuning external strains. The origination of the transition is that some orbital interactions in zigzag chains vary drastically with structural deformation, which changes dispersions of the corresponding bands. Two 2D nanosheets, monolayer PN and AsN, are searched out to confirm the mechanism by using first-principles calculations. They are intrinsic type-I or type-II Dirac materials, and transit to another type of Dirac materials by external strains. In addition, a possible routine is proposed to synthesize the new 2D structures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا