In this short note we prove that every tournament contains the $k$-th power of a directed path of linear length. This improves upon recent results of Yuster and of Gir~ao. We also give a complete solution for this problem when $k=2$, showing that there is always a square of a directed path of length $lceil 2n/3 rceil-1$, which is best possible.
We consider a generalisation of Kellys conjecture which is due to Alspach, Mason, and Pullman from 1976. Kellys conjecture states that every regular tournament has an edge decomposition into Hamilton cycles, and this was proved by Kuhn and Osthus for large tournaments. The conjecture of Alspach, Mason, and Pullman asks for the minimum number of paths needed in a path decomposition of a general tournament $T$. There is a natural lower bound for this number in terms of the degree sequence of $T$ and it is conjectured that this bound is correct for tournaments of even order. Almost all cases of the conjecture are open and we prove many of them.
Given graphs $G$ and $H$ and a positive integer $q$ say that $G$ is $q$-Ramsey for $H$, denoted $Grightarrow (H)_q$, if every $q$-colouring of the edges of $G$ contains a monochromatic copy of $H$. The size-Ramsey number $hat{r}(H)$ of a graph $H$ is defined to be $hat{r}(H)=min{|E(G)|colon Grightarrow (H)_2}$. Answering a question of Conlon, we prove that, for every fixed $k$, we have $hat{r}(P_n^k)=O(n)$, where $P_n^k$ is the $k$-th power of the $n$-vertex path $P_n$ (i.e. , the graph with vertex set $V(P_n)$ and all edges ${u,v}$ such that the distance between $u$ and $v$ in $P_n$ is at most $k$). Our proof is probabilistic, but can also be made constructive.
Given a positive integer $s$, a graph $G$ is $s$-Ramsey for a graph $H$, denoted $Grightarrow (H)_s$, if every $s$-colouring of the edges of $G$ contains a monochromatic copy of $H$. The $s$-colour size-Ramsey number ${hat{r}}_s(H)$ of a graph $H$ is defined to be ${hat{r}}_s(H)=min{|E(G)|colon Grightarrow (H)_s}$. We prove that, for all positive integers $k$ and $s$, we have ${hat{r}}_s(P_n^k)=O(n)$, where $P_n^k$ is the $k$th power of the $n$-vertex path $P_n$.
In 1976, Alspach, Mason, and Pullman conjectured that any tournament $T$ of even order can be decomposed into exactly ${rm ex}(T)$ paths, where ${rm ex}(T):= frac{1}{2}sum_{vin V(T)}|d_T^+(v)-d_T^-(v)|$. We prove this conjecture for all sufficiently large tournaments. We also prove an asymptotically optimal result for tournaments of odd order.
We study the asymptotic behavior of the maximum number of directed cycles of a given length in a tournament: let $c(ell)$ be the limit of the ratio of the maximum number of cycles of length $ell$ in an $n$-vertex tournament and the expected number of cycles of length $ell$ in the random $n$-vertex tournament, when $n$ tends to infinity. It is well-known that $c(3)=1$ and $c(4)=4/3$. We show that $c(ell)=1$ if and only if $ell$ is not divisible by four, which settles a conjecture of Bartley and Day. If $ell$ is divisible by four, we show that $1+2cdotleft(2/piright)^{ell}le c(ell)le 1+left(2/pi+o(1)right)^{ell}$ and determine the value $c(ell)$ exactly for $ell = 8$. We also give a full description of the asymptotic structure of tournaments with the maximum number of cycles of length $ell$ when $ell$ is not divisible by four or $ellin{4,8}$.