No Arabic abstract
In this paper, we focus on computational aspects of the Wasserstein barycenter problem. We propose two algorithms to compute Wasserstein barycenters of $m$ discrete measures of size $n$ with accuracy $e$. The first algorithm, based on mirror prox with a specific norm, meets the complexity of celebrated accelerated iterative Bregman projections (IBP), namely $widetilde O(mn^2sqrt n/e)$, however, with no limitations in contrast to the (accelerated) IBP, which is numerically unstable under small regularization parameter. The second algorithm, based on area-convexity and dual extrapolation, improves the previously best-known convergence rates for the Wasserstein barycenter problem enjoying $widetilde O(mn^2/e)$ complexity.
In this paper we propose to perform model ensembling in a multiclass or a multilabel learning setting using Wasserstein (W.) barycenters. Optimal transport metrics, such as the Wasserstein distance, allow incorporating semantic side information such as word embeddings. Using W. barycenters to find the consensus between models allows us to balance confidence and semantics in finding the agreement between the models. We show applications of Wasserstein ensembling in attribute-based classification, multilabel learning and image captioning generation. These results show that the W. ensembling is a viable alternative to the basic geometric or arithmetic mean ensembling.
This work presents an algorithm to sample from the Wasserstein barycenter of absolutely continuous measures. Our method is based on the gradient flow of the multimarginal formulation of the Wasserstein barycenter, with an additive penalization to account for the marginal constraints. We prove that the minimum of this penalized multimarginal formulation is achieved for a coupling that is close to the Wasserstein barycenter. The performances of the algorithm are showcased in several settings.
The Wasserstein barycenter has been widely studied in various fields, including natural language processing, and computer vision. However, it requires a high computational cost to solve the Wasserstein barycenter problem because the computation of the Wasserstein distance requires a quadratic time with respect to the number of supports. By contrast, the Wasserstein distance on a tree, called the tree-Wasserstein distance, can be computed in linear time and allows for the fast comparison of a large number of distributions. In this study, we propose a barycenter under the tree-Wasserstein distance, called the fixed support tree-Wasserstein barycenter (FS-TWB) and its extension, called the fixed support tree-sliced Wasserstein barycenter (FS-TSWB). More specifically, we first show that the FS-TWB and FS-TSWB problems are convex optimization problems and can be solved by using the projected subgradient descent. Moreover, we propose a more efficient algorithm to compute the subgradient and objective function value by using the properties of tree-Wasserstein barycenter problems. Through real-world experiments, we show that, by using the proposed algorithm, the FS-TWB and FS-TSWB can be solved two orders of magnitude faster than the original Wasserstein barycenter.
Several issues in machine learning and inverse problems require to generate discrete data, as if sampled from a model probability distribution. A common way to do so relies on the construction of a uniform probability distribution over a set of $N$ points which minimizes the Wasserstein distance to the model distribution. This minimization problem, where the unknowns are the positions of the atoms, is non-convex. Yet, in most cases, a suitably adjusted version of Lloyds algorithm -- in which Voronoi cells are replaced by Power cells -- leads to configurations with small Wasserstein error. This is surprising because, again, of the non-convex nature of the problem, as well as the existence of spurious critical points. We provide explicit upper bounds for the convergence speed of this Lloyd-type algorithm, starting from a cloud of points sufficiently far from each other. This already works after one step of the iteration procedure, and similar bounds can be deduced, for the corresponding gradient descent. These bounds naturally lead to a modified Poliak-Lojasiewicz inequality for the Wasserstein distance cost, with an error term depending on the distances between Dirac masses in the discrete distribution.
Convex composition optimization is an emerging topic that covers a wide range of applications arising from stochastic optimal control, reinforcement learning and multi-stage stochastic programming. Existing algorithms suffer from unsatisfactory sample complexity and practical issues since they ignore the convexity structure in the algorithmic design. In this paper, we develop a new stochastic compositional variance-reduced gradient algorithm with the sample complexity of $O((m+n)log(1/epsilon)+1/epsilon^3)$ where $m+n$ is the total number of samples. Our algorithm is near-optimal as the dependence on $m+n$ is optimal up to a logarithmic factor. Experimental results on real-world datasets demonstrate the effectiveness and efficiency of the new algorithm.