Do you want to publish a course? Click here

The effects of rotation on the lithium depletion of G- and K-dwarfs in Messier 35

76   0   0.0 ( 0 )
 Added by Rob Jeffries
 Publication date 2020
  fields Physics
and research's language is English
 Authors R.D. Jeffries




Ask ChatGPT about the research

New fibre spectroscopy and radial velocities from the WIYN telescope are used to measure photospheric lithium in 242 high-probability, zero-age-main-sequence (ZAMS) F- to K-type members of the rich cluster M35. Combining these with published rotation periods, the connection between lithium depletion and rotation is studied in unprecedented detail. At $T_{rm eff}<5500$ K there is a strong relationship between faster rotation and less Li depletion, although with a dispersion larger than measurement uncertainties. Components of photometrically identified binary systems follow the same relationship. A correlation is also established between faster rotation rate (or smaller Rossby number), decreased Li depletion and larger stellar radius at a given $T_{rm eff}$. These results support models where starspots and interior magnetic fields lead to inflated radii and reduced Li depletion during the pre main sequence (PMS) phase for the fastest rotators. However, the data are also consistent with the idea that all stars suffered lower levels of Li depletion than predicted by standard PMS models, perhaps because of deficiencies in those models or because saturated levels of magnetic activity suppress Li depletion equally in PMS stars of similar $T_{rm eff}$ regardless of rotation rate, and that slower rotators subsequently experience more mixing and post-PMS Li depletion.



rate research

Read More

We compute rotating 1D stellar evolution models that include a modified temperature gradient in convection zones and criterion for convective instability inspired by rotating 3D hydrodynamical simulations performed with the MUSIC code. In those 3D simulations we found that convective properties strongly depend on the Solberg-H{o}iland criterion for stability. We therefore incorporated this into 1D stellar evolution models by replacing the usual Schwarzschild criterion for stability and also modifying the temperature gradient in convection zones. We computed a grid of 1D models between 0.55 and 1.2 stellar masses from the pre-main sequence to the end of main sequence in order to study the problem of lithium depletion in low-mass main sequence stars. This is an ideal test case because many of those stars are born as fast rotators and the rate of lithium depletion is very sensitive to the changes in the stellar structure. Additionally, observations show a correlation between slow rotation and lithium depletion, contrary to expectations from standard models of rotationally driven mixing. By suppressing convection, and therefore decreasing the temperature at the base of the convective envelope, lithium burning is strongly quenched in our rapidly rotating models to an extent sufficient to account for the lithium spread observed in young open clusters.
Aims: We study the influence of rotation and disc lifetime on lithium depletion of pre-main sequence (PMS) solar-type stars. Methods: The impact of rotational mixing and of the hydrostatic effects of rotation on lithium abundances are investigated by computing non-rotating and rotating PMS models that include a comprehensive treatment of shellular rotation. The influence of the disc lifetime is then studied by comparing the lithium content of PMS rotating models experiencing different durations of the disc-locking phase between 3 and 9 Myr. Results: The surface lithium abundance at the end of the PMS is decreased when rotational effects are included. During the beginning of the lithium depletion phase, only hydrostatic effects of rotation are at work. This results in a decrease in the lithium depletion rate for rotating models compared to non-rotating ones. When the convective envelope recedes from the stellar centre, rotational mixing begins to play an important role due to differential rotation near the bottom of the convective envelope. This mixing results in a decrease in the surface lithium abundance with a limited contribution from hydrostatic effects of rotation, which favours lithium depletion during the second part of the PMS evolution. The impact of rotation on PMS lithium depletion is also found to be sensitive to the duration of the disc-locking phase. When the disc lifetime increases, the PMS lithium abundance of a solar-type star decreases owing to the higher efficiency of rotational mixing in the radiative zone. A relationship between the surface rotation and lithium abundance at the end of the PMS is then obtained: slow rotators on the zero-age main sequence are predicted to be more lithium-depleted than fast rotators due to the increase in the disc lifetime.
Aims. We study the evolution of rotation and high energy X-ray, extreme ultraviolet (EUV), and Ly-alpha emission for F, G, K, and M dwarfs, with masses between 0.1 and 1.2 Msun, and provide our evolutionary code and a freely available set of evolutionary tracks for use in planetary atmosphere studies. Methods. We develop a physical rotational evolution model constrained by observed rotation distributions in young stellar clusters. Using rotation, X-ray, EUV, and Ly-alpha measurements, we derive empirical relations for the dependences of high energy emission on stellar parameters. Our description of X-ray evolution is validated using measurements of X-ray distributions in young clusters. Results. A stars X-ray, EUV, and Ly-alpha evolution is determined by its mass and initial rotation rate, with initial rotation being less important for lower mass stars. At all ages, solar mass stars are significantly more X-ray luminous than lower mass stars and stars that are born as rapid rotators remain highly active longer than those born as slow rotators. At all evolutionary stages, habitable zone planets receive higher X-ray and EUV fluxes when orbiting lower mass stars due to their longer evolutionary timescales. The rates of flares follow similar evolutionary trends with higher mass stars flaring more often than lower mass stars at all ages, though habitable zone planets are likely influenced by flares more when orbiting lower mass stars. Conclusions. Our results show that single decay-laws are insufficient to describe stellar activity evolution and highlight the need for a more comprehensive description based on the evolution of rotation, including also the effects of short-term variability. Planets at similar orbital distances from their host stars receive significantly more X-ray and EUV energy over their lifetimes when orbiting higher mass stars. (abstract incomplete)
Aims: The effects of rotation and magnetic fields on the surface abundances of solar-type stars are studied in order to investigate whether the reported difference in lithium content of exoplanet-host stars can be related to their rotational history. Moreover, the asteroseismic properties predicted for stars with and without exoplanets are compared to determine how such a scenario, which relates the lithium abundances and the rotational history of the star, can be further challenged by observations of solar-like oscillations. Methods: Based on observations of rotational periods of solar-type stars, slow rotators on the zero age main sequence (ZAMS) are modelled with a comprehensive treatment of only the shellular rotation, while fast rotators are modelled including both shellular rotation and magnetic fields. Assuming a possible link between low rotation rates on the ZAMS and the presence of planets as a result of a longer disc-locking phase during the pre-main sequence (PMS), we compare the surface abundances and asteroseismic properties of slow and fast rotating models, which correspond to exoplanet-host stars and stars without detected planets, respectively. Results: We confirm previous suggestions that the difference in the lithium content of stars with and without detected planets can be related to their different rotational history. The larger efficiency of rotational mixing predicted in exoplanet-host stars explains their lithium depletion and also leads to changes in the structure and chemical composition of the central stellar layers. Asteroseismic observations can reveal these changes and can help us distinguish between different possible explanations for the lower lithium content of exoplanet-host stars.
Rotational light modulation in Kepler photometry of K - A stars is used to estimate the absolute rotational shear. The rotation frequency spread in 2562 carefully selected stars with known rotation periods is measured using time-frequency diagrams. The variation of rotational shear as a function of effective temperature in restricted ranges of rotation period is determined. The shear increases to a maximum in F stars, but decreases somewhat in the A stars. Theoretical models reproduce the temperature variation quite well. The dependence of rotation shear on rotation rate in restricted temperature ranges is also determined. The dependence of the shear on the rotation rate is weak in K and G stars, increases rapidly for F stars and is strongest in A stars. For stars earlier than type K, a discrepancy exists between the predicted and observed variation of shear with rotation rate. There is a strong increase in the fraction of stars with zero frequency spread with increasing effective temperature. The time-frequency diagrams for A stars are no different from those in cool stars, further supporting the presence of spots in stars with radiative envelopes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا