Do you want to publish a course? Click here

Oscillatory magnetic fields for neutron resonance spin-echo spectroscopy

164   0   0.0 ( 0 )
 Added by Jonathan Leiner
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The generation of high frequency oscillatory magnetic fields represents a fundamental component underlying the successful implementation of neutron resonant spin-echo spectrometers, a class of instrumentation critical for the high-resolution extraction of dynamical excitations (structural and magnetic) in materials. In this paper, the setup of the resonant circuits at the longitudinal resonant spin-echo spectrometer RESEDA is described in comprehensive technical detail. We demonstrate that these circuits are capable of functioning at frequencies up to 3.6 MHz and over a broad bandwidth down to 35 kHz using a combination of signal generators, amplifiers, impedance matching transformers, and a carefully designed cascade of tunable capacitors and customized coils.



rate research

Read More

We report a method to determine the phase and amplitude of sinusoidally modulated event rates, binned into 4 bins per oscillation. The presented algorithm relies on a reconstruction of the unknown parameters. It omits a calculation intensive fitting procedure and avoids contrast reduction due to averaging effects. It allows the current data acquisition bottleneck to be relaxed by a factor of 4. Here, we explain the approach in detail and compare it to the established fitting procedures of time series having 4 and 16 time bins per oscillation. In addition we present the empirical estimates of the errors of the three methods and compare them to each other. We show that the reconstruction is unbiased, asymptotic, and efficient for estimating the phase. Reconstructing the contrast, which corresponds to the amplitude of the modulation, is roughly 10% less efficient than fitting 16 time binned oscillations. Finally, we give analytical equations to estimate the error for phase and contrast as a function of their initial values and counting statistics.
Recent progress in neutron spin-echo spectroscopy by means of longitudinal Modulation of IntEnsity with Zero Effort (MIEZE) is reviewed. Key technical characteristics are summarized which highlight that the parameter range accessible in momentum and energy, as well as its limitations, are extremely well understood and controlled. Typical experimental data comprising quasi-elastic and inelastic scattering are presented, featuring magneto-elastic coupling and crystal field excitations in Ho2Ti2O7, the skyrmion lattice to paramagnetic transition under applied magnetic field in MnSi, ferromagnetic criticality and spin waves in Fe. In addition bench marking studies of the molecular dynamics in H2O are reported. Taken together, the advantages of MIEZE spectroscopy in studies at small and intermediate momentum transfers comprise an exceptionally wide dynamic range of over seven orders of magnitude, the capability to perform straight forward studies on depolarizing samples or under depolarizing sample environments, as well as on incoherently scattering materials.
The effect of temperature dependent asymmetric line broadening is investigated in Cu(NO$_3$)$_2cdot$2.5D$_2$O, a model material for a 1-D bond alternating Heisenberg chain, using the high resolution neutron-resonance spin-echo (NRSE) technique. Inelastic neutron scattering experiments on dispersive excitations including phase sensitive measurements demonstrate the potential of NRSE to resolve line shapes, which are non-Lorentzian, opening up a new and hitherto unexplored class of experiments for the NRSE method beyond standard line width measurements. The particular advantage of NRSE is its direct access to the correlations in the time domain without convolution with the resolution function of the background spectrometer. This novel application of NRSE is very promising and establishes a basis for further experiments on different systems, since the results for Cu(NO$_3$)$_2cdot$2.5D$_2$O are applicable to a broad range of quantum systems.
We demonstrate nuclear magnetic resonance (NMR) spectroscopy of picoliter-volume solutions with a nanostructured diamond chip. Using optical interferometric lithography, diamond surfaces were nanostructured with dense, high-aspect-ratio nanogratings, enhancing the surface area by more than a factor of 15 over mm^2 regions of the chip. The nanograting sidewalls were doped with nitrogen-vacancy (NV) centers so that more than 10 million NV centers in a (25 micrometer)^2 laser spot are located close enough to the diamond surface (5 nm) to detect the NMR spectrum of 1 pL of fluid lying within adjacent nanograting grooves. The platform was used to perform 1H and 19F NMR spectroscopy at room temperature in magnetic fields below 50 mT. Using a solution of CsF in glycerol, we demonstrate that 4 +/- 2 x 10^12 19F spins in a 1 pL volume, can be detected with a signal-to-noise ratio of 3 in 1 s integration. This represents nearly two orders of magnitude improvement in concentration sensitivity over previous NV and picoliter NMR studies.
In zero magnetic field, the famous neutron spin resonance in the f-electron superconductor CeCoIn5 is similar to the recently discovered exciton peak in the non-superconducting CeB6. Magnetic field splits the resonance in CeCoIn5 into two components, indicating that it is a doublet. Here we employ inelastic neutron scattering (INS) to scrutinize the field dependence of spin fluctuations in CeB6. The exciton shows a markedly different behavior without any field splitting. Instead, we observe a second field-induced magnon whose energy increases with field. At the ferromagnetic zone center, however, we find only a single mode with a non-monotonic field dependence. At low fields, it is initially suppressed to zero together with the antiferromagnetic order parameter, but then reappears at higher fields inside the hidden-order phase, following the energy of an electron spin resonance (ESR). This is a unique example of a ferromagnetic resonance in a heavy-fermion metal seen by both ESR and INS consistently over a broad range of magnetic fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا