Do you want to publish a course? Click here

Artificial intelligence supported anemia control system (AISACS) to prevent anemia in maintenance hemodialysis patients

55   0   0.0 ( 0 )
 Added by Yoshiki Sugitani
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Anemia, for which erythropoiesis-stimulating agents (ESAs) and iron supplements (ISs) are used as preventive measures, presents important difficulties for hemodialysis patients. Nevertheless, the number of physicians able to manage such medications appropriately is not keeping pace with the rapid increase of hemodialysis patients. Moreover, the high cost of ESAs imposes heavy burdens on medical insurance systems. An artificial-intelligence-supported anemia control system (AISACS) trained using administration direction data from experienced physicians has been developed by the authors. For the system, appropriate data selection and rectification techniques play important roles. Decision making related to ESAs poses a multi-class classification problem for which a two-step classification technique is introduced. Several validations have demonstrated that AISACS exhibits high performance with correct classification rates of 72-87% and clinically appropriate classification rates of 92-98%.



rate research

Read More

Despite its high prevalence, anemia is often undetected due to the invasiveness and cost of screening and diagnostic tests. Though some non-invasive approaches have been developed, they are less accurate than invasive methods, resulting in an unmet need for more accurate non-invasive methods. Here, we show that deep learning-based algorithms can detect anemia and quantify several related blood measurements using retinal fundus images both in isolation and in combination with basic metadata such as patient demographics. On a validation dataset of 11,388 patients from the UK Biobank, our algorithms achieved a mean absolute error of 0.63 g/dL (95% confidence interval (CI) 0.62-0.64) in quantifying hemoglobin concentration and an area under receiver operating characteristic curve (AUC) of 0.88 (95% CI 0.86-0.89) in detecting anemia. This work shows the potential of automated non-invasive anemia screening based on fundus images, particularly in diabetic patients, who may have regular retinal imaging and are at increased risk of further morbidity and mortality from anemia.
Regular monitoring of nutrient intake in hospitalised patients plays a critical role in reducing the risk of disease-related malnutrition. Although several methods to estimate nutrient intake have been developed, there is still a clear demand for a more reliable and fully automated technique, as this could improve data accuracy and reduce both the burden on participants and health costs. In this paper, we propose a novel system based on artificial intelligence (AI) to accurately estimate nutrient intake, by simply processing RGB Depth (RGB-D) image pairs captured before and after meal consumption. The system includes a novel multi-task contextual network for food segmentation, a few-shot learning-based classifier built by limited training samples for food recognition, and an algorithm for 3D surface construction. This allows sequential food segmentation, recognition, and estimation of the consumed food volume, permitting fully automatic estimation of the nutrient intake for each meal. For the development and evaluation of the system, a dedicated new database containing images and nutrient recipes of 322 meals is assembled, coupled to data annotation using innovative strategies. Experimental results demonstrate that the estimated nutrient intake is highly correlated (> 0.91) to the ground truth and shows very small mean relative errors (< 20%), outperforming existing techniques proposed for nutrient intake assessment.
During the coronavirus disease 2019 (COVID-19) pandemic, rapid and accurate triage of patients at the emergency department is critical to inform decision-making. We propose a data-driven approach for automatic prediction of deterioration risk using a deep neural network that learns from chest X-ray images and a gradient boosting model that learns from routine clinical variables. Our AI prognosis system, trained using data from 3,661 patients, achieves an area under the receiver operating characteristic curve (AUC) of 0.786 (95% CI: 0.745-0.830) when predicting deterioration within 96 hours. The deep neural network extracts informative areas of chest X-ray images to assist clinicians in interpreting the predictions and performs comparably to two radiologists in a reader study. In order to verify performance in a real clinical setting, we silently deployed a preliminary version of the deep neural network at New York University Langone Health during the first wave of the pandemic, which produced accurate predictions in real-time. In summary, our findings demonstrate the potential of the proposed system for assisting front-line physicians in the triage of COVID-19 patients.
1. Deciphering coexistence patterns is a current challenge to understanding diversity maintenance, especially in rich communities where the complexity of these patterns is magnified through indirect interactions that prevent their approximation with classical experimental approaches. 2. We explore cutting-edge Machine Learning techniques called Generative Artificial Intelligence (GenAI) to decipher species coexistence patterns in vegetation patches, training generative adversarial networks (GAN) and variational AutoEncoders (VAE) that are then used to unravel some of the mechanisms behind community assemblage. 3. The GAN accurately reproduces the species composition of real patches as well as the affinity of plant species to different soil types, and the VAE also reaches a high level of accuracy, above 99%. Using the artificially generated patches, we found that high order interactions tend to suppress the positive effects of low order interactions. Finally, by reconstructing successional trajectories we could identify the pioneer species with larger potential to generate a high diversity of distinct patches in terms of species composition. 4. Understanding the complexity of species coexistence patterns in diverse ecological communities requires new approaches beyond heuristic rules. Generative Artificial Intelligence can be a powerful tool to this end as it allows to overcome the inherent dimensionality of this challenge.
Dry eye disease (DED) has a prevalence of between 5 and 50%, depending on the diagnostic criteria used and population under study. However, it remains one of the most underdiagnosed and undertreated conditions in ophthalmology. Many tests used in the diagnosis of DED rely on an experienced observer for image interpretation, which may be considered subjective and result in variation in diagnosis. Since artificial intelligence (AI) systems are capable of advanced problem solving, use of such techniques could lead to more objective diagnosis. Although the term `AI is commonly used, recent success in its applications to medicine is mainly due to advancements in the sub-field of machine learning, which has been used to automatically classify images and predict medical outcomes. Powerful machine learning techniques have been harnessed to understand nuances in patient data and medical images, aiming for consistent diagnosis and stratification of disease severity. This is the first literature review on the use of AI in DED. We provide a brief introduction to AI, report its current use in DED research and its potential for application in the clinic. Our review found that AI has been employed in a wide range of DED clinical tests and research applications, primarily for interpretation of interferometry, slit-lamp and meibography images. While initial results are promising, much work is still needed on model development, clinical testing and standardisation.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا